Proof of Cotangent Formula cot (α + β)

We will learn step-by-step the proof of cotangent formula cot (α + β).

Prove that, cot (α + β) = \(\frac{cot  α  cot  β   -   1}{cot  β   -   cot  α}\).

Proof: cot (α + β) = \(\frac{cos  (α  +  β)}{sin  (α  +  β)}\)

                         = \(\frac{cos  α  cos  β  -  sin  α  sin  β}{sin  α  cos  β  +  cos  α  sin  β}\)

                         = \(\frac{\frac{cos  α  cos  β}{sin  α  sin  β}  -  \frac{sin  α  sin  β}{sin  α  sin  β}}{\frac{sin  α  cos  β}{sin  α  sin  β}  +  \frac{cos  α  sin  β}{sin  α  sin  β}}\), [dividing numerator and denominator by sin α sin β].

                         = \(\frac{cot  α  cot  β  -  1}{cot  β  -  cot  α}\).            Proved

Therefore, cot (α + β) = \(\frac{cot  α  cot  β  -  1}{cot  β  -  cot  α}\).

Solved examples using the proof of cotangent formula cot (α + β):

1. Prove the identities: cot x cot 2x - cot 2x cot 3x - cot 3x cot x = 1

Solution:

We know that 3x = 2x + x

Therefore, cot 3x = cot (x + 2x)

cot 3x = \(\frac{cot  x  cot  2x  -  1}{cot  2x  +  cot  x}\)

⇒ cot x cot 2x - 1 = cot 2x cot 3x + cot 3x cot x

⇒ cot x cot 2x - cot 2x cot 3x - cot 3x cot x = 1            Proved

 

2. If α + β = 225° show that \(\frac{cot  α}{(1  +  cot  α)}\) ∙ \(\frac{cot  β}{(1  +  cot  β)}\) = 1/2

Solution:

Given, α + β = 225°

         α + β = 180° + 45°                        

 cot (α + β) = cot (180° + 45°), [taking cot on both the sides]

⇒ \(\frac{cot  α  cot  β  -  1}{cot  α  +  cot  β}\) = cot 45°

⇒ \(\frac{cot  α  cot  β  -  1}{cot  α  +  cot  β}\) = 1, [since we know cot 45° = 1]

⇒ cot α cot β - 1 = cot α + cot β 

⇒ cot α cot β = 1 + cot α + cot β

⇒ 2 cot α cot β = 1 + cot α + cot β + cot α cot β, [adding cot α cot β on both sides]

⇒ 2 cot α cot β = (1 + cot α) + cot β (1 + cot α)

⇒ 2 cot α cot β = (1 + cot α) + cot β (1 + cot α)

⇒ 2 cot α cot β = (1 + cot α)(1 + cot β)

⇒ \(\frac{cot  α}{(1  +  cot  α)}\) ∙ \(\frac{cot  β}{(1  +  cot  β)}\) = 1/2            Proved

 Compound Angle






11 and 12 Grade Math

From Proof of Cotangent Formula cot (α + β) to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 24, 24 04:33 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  2. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  3. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More

  4. Numerator and Denominator of a Fraction | Numerator of the Fraction

    Feb 24, 24 04:09 PM

    What are the numerator and denominator of a fraction? We have already learnt that a fraction is written with two numbers arranged one over the other and separated by a line.

    Read More

  5. Roman Numerals | System of Numbers | Symbol of Roman Numerals |Numbers

    Feb 24, 24 10:59 AM

    List of Roman Numerals Chart
    How to read and write roman numerals? Hundreds of year ago, the Romans had a system of numbers which had only seven symbols. Each symbol had a different value and there was no symbol for 0. The symbol…

    Read More