Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Proof of Cotangent Formula cot (α + β)

We will learn step-by-step the proof of cotangent formula cot (α + β).

Prove that, cot (α + β) = \(\frac{cot  α  cot  β   -   1}{cot  β   -   cot  α}\).

Proof: cot (α + β) = \(\frac{cos  (α  +  β)}{sin  (α  +  β)}\)

                         = \(\frac{cos  α  cos  β  -  sin  α  sin  β}{sin  α  cos  β  +  cos  α  sin  β}\)

                         = \(\frac{\frac{cos  α  cos  β}{sin  α  sin  β}  -  \frac{sin  α  sin  β}{sin  α  sin  β}}{\frac{sin  α  cos  β}{sin  α  sin  β}  +  \frac{cos  α  sin  β}{sin  α  sin  β}}\), [dividing numerator and denominator by sin α sin β].

                         = \(\frac{cot  α  cot  β  -  1}{cot  β  -  cot  α}\).            Proved

Therefore, cot (α + β) = \(\frac{cot  α  cot  β  -  1}{cot  β  -  cot  α}\).

Solved examples using the proof of cotangent formula cot (α + β):

1. Prove the identities: cot x cot 2x - cot 2x cot 3x - cot 3x cot x = 1

Solution:

We know that 3x = 2x + x

Therefore, cot 3x = cot (x + 2x)

cot 3x = \(\frac{cot  x  cot  2x  -  1}{cot  2x  +  cot  x}\)

⇒ cot x cot 2x - 1 = cot 2x cot 3x + cot 3x cot x

⇒ cot x cot 2x - cot 2x cot 3x - cot 3x cot x = 1            Proved

 

2. If α + β = 225° show that \(\frac{cot  α}{(1  +  cot  α)}\) ∙ \(\frac{cot  β}{(1  +  cot  β)}\) = 1/2

Solution:

Given, α + β = 225°

         α + β = 180° + 45°                        

 cot (α + β) = cot (180° + 45°), [taking cot on both the sides]

⇒ \(\frac{cot  α  cot  β  -  1}{cot  α  +  cot  β}\) = cot 45°

⇒ \(\frac{cot  α  cot  β  -  1}{cot  α  +  cot  β}\) = 1, [since we know cot 45° = 1]

⇒ cot α cot β - 1 = cot α + cot β 

⇒ cot α cot β = 1 + cot α + cot β

⇒ 2 cot α cot β = 1 + cot α + cot β + cot α cot β, [adding cot α cot β on both sides]

⇒ 2 cot α cot β = (1 + cot α) + cot β (1 + cot α)

⇒ 2 cot α cot β = (1 + cot α) + cot β (1 + cot α)

⇒ 2 cot α cot β = (1 + cot α)(1 + cot β)

⇒ \(\frac{cot  α}{(1  +  cot  α)}\) ∙ \(\frac{cot  β}{(1  +  cot  β)}\) = 1/2            Proved

 Compound Angle






11 and 12 Grade Math

From Proof of Cotangent Formula cot (α + β) to HOME PAGE


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.