We will learn step-by-step the proof of cotangent formula cot (α + β).
Prove that, cot (α + β) = \(\frac{cot α cot β - 1}{cot β - cot α}\).
Proof: cot (α + β) = \(\frac{cos (α + β)}{sin (α + β)}\)
= \(\frac{cos α cos β - sin α sin β}{sin α cos β + cos α sin β}\)
= \(\frac{\frac{cos α cos β}{sin α sin β} - \frac{sin α sin β}{sin α sin β}}{\frac{sin α cos β}{sin α sin β} + \frac{cos α sin β}{sin α sin β}}\), [dividing numerator and denominator by sin α sin β].
= \(\frac{cot α cot β - 1}{cot β - cot α}\). Proved
Therefore, cot (α + β) = \(\frac{cot α cot β - 1}{cot β - cot α}\).
Solved
examples using the proof of cotangent formula
cot (α + β):
1. Prove the identities: cot x cot 2x - cot 2x cot 3x - cot 3x cot x = 1
Solution:
We know that 3x = 2x + x
Therefore, cot 3x = cot (x + 2x)
cot 3x = \(\frac{cot x cot 2x - 1}{cot 2x + cot x}\)
⇒ cot x cot 2x - 1 = cot 2x cot 3x + cot 3x cot x
⇒ cot x cot 2x - cot 2x cot 3x - cot 3x cot x = 1 Proved
2. If α + β = 225° show that \(\frac{cot α}{(1 + cot α)}\) ∙ \(\frac{cot β}{(1 + cot β)}\) = 1/2
Solution:
Given, α + β = 225°
α + β = 180° + 45°
cot (α + β) = cot (180° + 45°), [taking cot on both the sides]
⇒ \(\frac{cot α cot β - 1}{cot α + cot β}\) = cot 45°
⇒ \(\frac{cot α cot β - 1}{cot α + cot β}\) = 1, [since we know cot 45° = 1]
⇒ cot α cot β - 1 = cot α + cot β
⇒ cot α cot β = 1 + cot α + cot β
⇒ 2 cot α cot β = 1 + cot α + cot β + cot α cot β, [adding cot α cot β on both sides]
⇒ 2 cot α cot β = (1 + cot α) + cot β (1 + cot α)
⇒ 2 cot α cot β = (1 + cot α) + cot β (1 + cot α)
⇒ 2 cot α cot β = (1 + cot α)(1 + cot β)
⇒ \(\frac{cot α}{(1 + cot α)}\) ∙ \(\frac{cot β}{(1 + cot β)}\) = 1/2 Proved
11 and 12 Grade Math
From Proof of Cotangent Formula cot (α + β) to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Oct 08, 24 10:53 AM
Oct 07, 24 04:07 PM
Oct 07, 24 03:29 PM
Oct 07, 24 03:13 PM
Oct 07, 24 12:01 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.