Proof of Compound Angle Formula
sin (α - β)

We will learn step-by-step the proof of compound angle formula sin (α - β). Here we will derive formula for trigonometric function of the difference of two real numbers or angles and their related result. The basic results are called trigonometric identities.

The expansion of sin (α - β) is generally called subtraction formulae. In the geometrical proof of the subtraction formulae we are assuming that α, β are positive acute angles and α > β. But these formulae are true for any positive or negative values of α and β.

Now we will prove that, sin (α - β) = sin α cos β - cos α sin β; where α and β are positive acute angles and α > β.

Let a rotating line OX rotate about O in the anti-clockwise direction. From starting position to its initial position OX makes out an acute ∠XOY = α.

Now, the rotating line rotates further in the clockwise direction and starting from the position OY makes out an acute ∠YOZ = β (which is < α).

Thus, ∠XOZ = α - β.    

We are suppose to prove that, sin (α - β) = sin α cos β - cos α sin β.



Construction: On the bounding line of the compound angle (α - β) take a point A on OZ and draw AB and AC perpendiculars to OX and OY respectively. Again, from C draw perpendiculars CD and CE upon OX and produced BA respectively.

Proof of Compound Angle Formula sin (α - β)

Proof: From triangle ACE we get, ∠EAC = 90° - ∠ACE = ∠YCE = corresponding ∠XOY = α.

Now, from the right-angled triangle AOB we get,

sin (α - β) = \(\frac{BA}{OA}\)

               = \(\frac{BE - EA}{OA}\)

               = \(\frac{BE}{OA}\) - \(\frac{EA}{OA}\)

               = \(\frac{CD}{OA}\) - \(\frac{EA}{OA}\)

               = \(\frac{CD}{OC}\) ∙ \(\frac{OC}{OA}\) - \(\frac{EA}{AC}\) ∙ \(\frac{AC}{OA}\)

               = sin α cos β - cos ∠CAE sin β  

               = sin α cos β - cos α sin β, (since we know, ∠CAE = α)

Therefore, sin (α - β) = sin α cos β - cos α sin β. Proved

1. Using the t-ratios of 30° and 45°, find the values of sin 15°.              

Solution:    

   sin 15°

= sin (45° - 30°)

= sin 45° cos 30° - cos 45° sin 30°

= (\(\frac{1}{√2}\) ∙ \(\frac{√3}{2}\)) - (\(\frac{1}{√2}\) ∙ \(\frac{1}{2}\))

= \(\frac{√3 - 1}{2√2}\)

 

2. Prove that sin (40° + A) cos (10° + A) - cos (40° + A) sin (10° + A) = 1/2.

Solution:

L.H.S. = sin (40° + A) cos (10° + A) - cos (40° + A) sin (10° + A)

= sin {(40° + A) - (10° + A)}, [Applying the formula of sin α cos β - cos α sin β = sin (α - β)]

= sin (40° + A - 10° - A)

= sin 30°

= ½.

 

3. Simplify: \(\frac{sin (x  -  y)}{sin x sin y}\) + \(\frac{sin (y  -  z)}{sin y sin z}\) + \(\frac{sin (z  -  x)}{sin z sin x}\)

Solution:

 First term of the given expression = \(\frac{sin (x   -   y)}{sin x sin y}\)

= \(\frac{sin x cos y  -  cos x sin y}{sin x sin y}\)

= \(\frac{sin x cos y}{sin x sin y}\) - \(\frac{cos x sin y}{sin x sin y}\)

= cot y - cot x.

Similarly, second term = \(\frac{sin (y  -  z)}{sin y sin z}\) = cot z - cot y.

And third term = \(\frac{sin (z  -  x)}{sin z sin x}\) = cot x - cot z.

Therefore,

\(\frac{sin (x  -  y)}{sin x sin y}\) + \(\frac{sin (y  -  z)}{sin y sin z}\) + \(\frac{sin (z  -  x)}{sin z sin x}\)

= cot y - cot x + cot z - cot y + cot x - cot z

= 0.

 Compound Angle






11 and 12 Grade Math

From Proof of Compound Angle Formula sin (α - β) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 10, 24 02:35 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More