Proof of Compound Angle Formula
sin (α - β)

We will learn step-by-step the proof of compound angle formula sin (α - β). Here we will derive formula for trigonometric function of the difference of two real numbers or angles and their related result. The basic results are called trigonometric identities.

The expansion of sin (α - β) is generally called subtraction formulae. In the geometrical proof of the subtraction formulae we are assuming that α, β are positive acute angles and α > β. But these formulae are true for any positive or negative values of α and β.

Now we will prove that, sin (α - β) = sin α cos β - cos α sin β; where α and β are positive acute angles and α > β.

Let a rotating line OX rotate about O in the anti-clockwise direction. From starting position to its initial position OX makes out an acute ∠XOY = α.

Now, the rotating line rotates further in the clockwise direction and starting from the position OY makes out an acute ∠YOZ = β (which is < α).

Thus, ∠XOZ = α - β.    

We are suppose to prove that, sin (α - β) = sin α cos β - cos α sin β.



Construction: On the bounding line of the compound angle (α - β) take a point A on OZ and draw AB and AC perpendiculars to OX and OY respectively. Again, from C draw perpendiculars CD and CE upon OX and produced BA respectively.

Proof of Compound Angle Formula sin (α - β)

Proof: From triangle ACE we get, ∠EAC = 90° - ∠ACE = ∠YCE = corresponding ∠XOY = α.

Now, from the right-angled triangle AOB we get,

sin (α - β) = \(\frac{BA}{OA}\)

               = \(\frac{BE - EA}{OA}\)

               = \(\frac{BE}{OA}\) - \(\frac{EA}{OA}\)

               = \(\frac{CD}{OA}\) - \(\frac{EA}{OA}\)

               = \(\frac{CD}{OC}\) ∙ \(\frac{OC}{OA}\) - \(\frac{EA}{AC}\) ∙ \(\frac{AC}{OA}\)

               = sin α cos β - cos ∠CAE sin β  

               = sin α cos β - cos α sin β, (since we know, ∠CAE = α)

Therefore, sin (α - β) = sin α cos β - cos α sin β. Proved

1. Using the t-ratios of 30° and 45°, find the values of sin 15°.              

Solution:    

   sin 15°

= sin (45° - 30°)

= sin 45° cos 30° - cos 45° sin 30°

= (\(\frac{1}{√2}\) ∙ \(\frac{√3}{2}\)) - (\(\frac{1}{√2}\) ∙ \(\frac{1}{2}\))

= \(\frac{√3 - 1}{2√2}\)

 

2. Prove that sin (40° + A) cos (10° + A) - cos (40° + A) sin (10° + A) = 1/2.

Solution:

L.H.S. = sin (40° + A) cos (10° + A) - cos (40° + A) sin (10° + A)

= sin {(40° + A) - (10° + A)}, [Applying the formula of sin α cos β - cos α sin β = sin (α - β)]

= sin (40° + A - 10° - A)

= sin 30°

= ½.

 

3. Simplify: \(\frac{sin (x  -  y)}{sin x sin y}\) + \(\frac{sin (y  -  z)}{sin y sin z}\) + \(\frac{sin (z  -  x)}{sin z sin x}\)

Solution:

 First term of the given expression = \(\frac{sin (x   -   y)}{sin x sin y}\)

= \(\frac{sin x cos y  -  cos x sin y}{sin x sin y}\)

= \(\frac{sin x cos y}{sin x sin y}\) - \(\frac{cos x sin y}{sin x sin y}\)

= cot y - cot x.

Similarly, second term = \(\frac{sin (y  -  z)}{sin y sin z}\) = cot z - cot y.

And third term = \(\frac{sin (z  -  x)}{sin z sin x}\) = cot x - cot z.

Therefore,

\(\frac{sin (x  -  y)}{sin x sin y}\) + \(\frac{sin (y  -  z)}{sin y sin z}\) + \(\frac{sin (z  -  x)}{sin z sin x}\)

= cot y - cot x + cot z - cot y + cot x - cot z

= 0.

 Compound Angle






11 and 12 Grade Math

From Proof of Compound Angle Formula sin (α - β) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Concept of Fractions |Concept of Half| Concept of One Fourth|Two Third

    Nov 07, 24 12:38 AM

    One-half
    Concept of fractions will help us to express different fractional parts of a whole. One-half When an article or a collection of objects is divided into two equal parts is called as half of the whole.

    Read More

  2. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 06, 24 11:59 PM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  3. 2nd Grade Division Word Problems | Worksheet on Division Word Problems

    Nov 05, 24 01:49 PM

    Division Word Problems Grade 2

    Read More

  4. 2nd Grade Division Worksheet | Dividing 2-digit by 1-digit Numbers

    Nov 05, 24 01:15 AM

    Division Fact 12 ÷ 3
    Dividing 2-digit by 1-digit Numbers

    Read More

  5. Even and Odd Numbers Between 1 and 100 | Even and Odd Numbers|Examples

    Nov 05, 24 12:55 AM

    even and odd numbers
    All the even and odd numbers between 1 and 100 are discussed here. What are the even numbers from 1 to 100? The even numbers from 1 to 100 are:

    Read More