Proof of Compound Angle Formula
sin (α - β)

We will learn step-by-step the proof of compound angle formula sin (α - β). Here we will derive formula for trigonometric function of the difference of two real numbers or angles and their related result. The basic results are called trigonometric identities.

The expansion of sin (α - β) is generally called subtraction formulae. In the geometrical proof of the subtraction formulae we are assuming that α, β are positive acute angles and α > β. But these formulae are true for any positive or negative values of α and β.

Now we will prove that, sin (α - β) = sin α cos β - cos α sin β; where α and β are positive acute angles and α > β.

Let a rotating line OX rotate about O in the anti-clockwise direction. From starting position to its initial position OX makes out an acute ∠XOY = α.

Now, the rotating line rotates further in the clockwise direction and starting from the position OY makes out an acute ∠YOZ = β (which is < α).

Thus, ∠XOZ = α - β.    

We are suppose to prove that, sin (α - β) = sin α cos β - cos α sin β.



Construction: On the bounding line of the compound angle (α - β) take a point A on OZ and draw AB and AC perpendiculars to OX and OY respectively. Again, from C draw perpendiculars CD and CE upon OX and produced BA respectively.

Proof of Compound Angle Formula sin (α - β)

Proof: From triangle ACE we get, ∠EAC = 90° - ∠ACE = ∠YCE = corresponding ∠XOY = α.

Now, from the right-angled triangle AOB we get,

sin (α - β) = \(\frac{BA}{OA}\)

               = \(\frac{BE - EA}{OA}\)

               = \(\frac{BE}{OA}\) - \(\frac{EA}{OA}\)

               = \(\frac{CD}{OA}\) - \(\frac{EA}{OA}\)

               = \(\frac{CD}{OC}\) ∙ \(\frac{OC}{OA}\) - \(\frac{EA}{AC}\) ∙ \(\frac{AC}{OA}\)

               = sin α cos β - cos ∠CAE sin β  

               = sin α cos β - cos α sin β, (since we know, ∠CAE = α)

Therefore, sin (α - β) = sin α cos β - cos α sin β. Proved

1. Using the t-ratios of 30° and 45°, find the values of sin 15°.              

Solution:    

   sin 15°

= sin (45° - 30°)

= sin 45° cos 30° - cos 45° sin 30°

= (\(\frac{1}{√2}\) ∙ \(\frac{√3}{2}\)) - (\(\frac{1}{√2}\) ∙ \(\frac{1}{2}\))

= \(\frac{√3 - 1}{2√2}\)

 

2. Prove that sin (40° + A) cos (10° + A) - cos (40° + A) sin (10° + A) = 1/2.

Solution:

L.H.S. = sin (40° + A) cos (10° + A) - cos (40° + A) sin (10° + A)

= sin {(40° + A) - (10° + A)}, [Applying the formula of sin α cos β - cos α sin β = sin (α - β)]

= sin (40° + A - 10° - A)

= sin 30°

= ½.

 

3. Simplify: \(\frac{sin (x  -  y)}{sin x sin y}\) + \(\frac{sin (y  -  z)}{sin y sin z}\) + \(\frac{sin (z  -  x)}{sin z sin x}\)

Solution:

 First term of the given expression = \(\frac{sin (x   -   y)}{sin x sin y}\)

= \(\frac{sin x cos y  -  cos x sin y}{sin x sin y}\)

= \(\frac{sin x cos y}{sin x sin y}\) - \(\frac{cos x sin y}{sin x sin y}\)

= cot y - cot x.

Similarly, second term = \(\frac{sin (y  -  z)}{sin y sin z}\) = cot z - cot y.

And third term = \(\frac{sin (z  -  x)}{sin z sin x}\) = cot x - cot z.

Therefore,

\(\frac{sin (x  -  y)}{sin x sin y}\) + \(\frac{sin (y  -  z)}{sin y sin z}\) + \(\frac{sin (z  -  x)}{sin z sin x}\)

= cot y - cot x + cot z - cot y + cot x - cot z

= 0.

 Compound Angle






11 and 12 Grade Math

From Proof of Compound Angle Formula sin (α - β) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. BODMAS Rule | Order of Operation | Definition, Examples, Problems

    Mar 27, 25 03:02 AM

    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More

  2. 5th Grade Math Worksheets | 5th Grade Homework Sheets | Math Worksheet

    Mar 27, 25 02:46 AM

    5th grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 5th Grade Relation Between HCF and LCM | Solved Examples | Worksheet

    Mar 27, 25 02:34 AM

    Here we will discuss about the relationship between hcf and lcm of two numbers. Product of two numbers = Product of H.C.F. and L.C.M. of the numbers. Solved Examples on 5th Grade Relation Between HCF…

    Read More

  4. 5th Grade Word Problems on H.C.F. and L.C.M. | Worksheet with Answers

    Mar 27, 25 02:33 AM

    L.C.M. of 8, 24 and 32 by Long Division Method
    Here we will solve different types of word Problems on H.C.F. and L.C.M. Find the smallest number which when divided by 8, 24 and 32 when leaves 7 as remainder in each. 1. Find the lowest number which…

    Read More

  5. Divisible by 3 | Test of Divisibility by 3 |Rules of Divisibility by 3

    Mar 26, 25 11:08 AM

    Divisible by 3
    A number is divisible by 3, if the sum of its all digits is a multiple of 3 or divisibility by 3. Consider the following numbers to find whether the numbers are divisible or not divisible by 3: (i) 54…

    Read More