Problems on Compound Angles

We will learn how to solve different types of problems on compound angles using formula.

We will see step-by-step how to deal with the trigonometrical ratios of compound angles in different questions.

1. An angle θ is divided into two parts so that the ratio of the tangents of the parts is k; if the difference between the parts be ф, prove that, sin ф = (k - 1)/(k + 1) sin θ .

Solution:

Let, α and β be the two parts of the angle θ.

Therefore, θ = α + β.

By question, θ = α - β. (assuming a >β)

and tan α/tan β = k 

⇒ sin α cos β/sin β cos α = k/1

⇒ (sin α cos β + cos α sin β)/(sin α cos β - cos α sin β) = (k + 1)/(k - 1), [by componendo and dividendo]

⇒ sin (α + β)/sin (α - β) = (k + 1)/(k - 1)

⇒ (k + 1) sin Ø = (k - 1) sin θ, [Since we know that α + β = θ; α + β = ф]

⇒ sin ф = (k - 1)/(k + 1) sin θ.                                 Proved.

2. If x + y = z and tan x = k tan y, then prove that sin (x - y) = [(k - 1)/(k + 1)] sin z

Solution:

Given tan x = k tan y

⇒ sin x/cos x = k ∙ sin y/cos y

⇒ sin x cos y/cos x sin y = k/1

   Applying componendo and dividend, we get

   sin x cos y + cos x sin y/ sin x cos y - cos x sin y = k + 1/k - 1

⇒ sin (x + y)/sin (x – y) = k + 1/k - 1

⇒ sin z/sin (x – y) = k + 1/k - 1, [Since x + y = z given]

⇒ sin (x – y) = [k + 1/k – 1] sin z                                  Proved.

 

3.  If A + B + C = π and cos A = cos B cos C, show that, tan B tan C = 2

Solution:

   A + B + C = π              

   Therefore, B + C = π - A

⇒ cos (B + C) = cos (π - A)    

⇒ cos B cos C - sin B sin C = - cos A

⇒ cos B cos C + cos B cos C = sin B sin C,[Since we know, cos A = cos B cos C]

⇒ 2 cos B cos C = sin B sin C

⇒ tan B tan C = 2                                 Proved.

 

Note: In different problems on compound angles we need to use the formula as required.

4. Prove that cot 2x + tan x = csc 2x

Solution:

L.H.S. = cot 2x + tan x

         = cos 2x/sin 2x + sin x/cos x

         = cos 2x cos x + sin 2x sin x/sin 2x cos x

         = cos (2x - x)/sin 2x cos x

         = cos x/sin 2x cos x

         = 1/sin 2x

         = csc 2x = R.H.S.                                 Proved.

 

5.  If sin (A + B) + sin (B + C) + cos (C - A) = -3/2 show that,

sin A + cos B + sin C = 0; cos A + sin B + cos C = 0.

Solution:

Since, sin (A + B) + sin (B + C) + cos (C - A) = -3/2

Therefore, 2 (sin A cos B + cos A sin B + sin B cos C + cos B sin C + cos C cos A + sin C sin A) = -3

⇒ 2 (sin A cos B + cos A sin B + sin B cos C + cos B sin C + cos C cos A + sin C sin A) = - (1 + 1 + 1)

⇒ 2 (sin A cos B + cos A sin B + sin B cos C + cos B sin C + cos C cos A + sin C sin A) = - [(sin^2 A + cos^2 A) + (sin^2 B + cos^2 B) + (sin^2 C + cos^2 C)]           

⇒ (sin^2 A + cos^2 B + sin^2 C  + 2 sin A sin C + 2 sin A cos B + 2 cos B sin C) + (cos^2 A + sin^2 B + cos^2 C + 2 cos A sin B + 2 sin B cos C + 2 cos A cos C) = 0

⇒ (sin A + sin B + sin C)^2 + (cos A + sin B + cos C)^2

Now the sum of squares of two real quantities is zero if each quantity is separately zero.

Therefore, sin A + cos B + Sin C = 0

and cos A + sin B + cos C = 0.                                 Proved.







11 and 12 Grade Math

From Problems on Compound Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Area, Perimeter and Volume | Square, Rectangle, Cube,Cubo

    Jul 25, 25 12:21 PM

    In this worksheet on area perimeter and volume you will get different types of questions on find the perimeter of a rectangle, find the perimeter of a square, find the area of a rectangle, find the ar…

    Read More

  2. Worksheet on Volume of a Cube and Cuboid |The Volume of a RectangleBox

    Jul 25, 25 03:15 AM

    Volume of a Cube and Cuboid
    We will practice the questions given in the worksheet on volume of a cube and cuboid. We know the volume of an object is the amount of space occupied by the object.1. Fill in the blanks:

    Read More

  3. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 24, 25 03:46 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More

  4. Volume of a Cube | How to Calculate the Volume of a Cube? | Examples

    Jul 23, 25 11:37 AM

    Volume of a Cube
    A cube is a solid box whose every surface is a square of same area. Take an empty box with open top in the shape of a cube whose each edge is 2 cm. Now fit cubes of edges 1 cm in it. From the figure i…

    Read More

  5. 5th Grade Volume | Units of Volume | Measurement of Volume|Cubic Units

    Jul 20, 25 10:22 AM

    Cubes in Cuboid
    Volume is the amount of space enclosed by an object or shape, how much 3-dimensional space (length, height, and width) it occupies. A flat shape like triangle, square and rectangle occupies surface on…

    Read More