Loading [MathJax]/jax/output/HTML-CSS/jax.js

Proof of Compound Angle Formula
sin (α + β)

We will learn step-by-step the proof of compound angle formula sin (α + β). Here we will derive formula for trigonometric function of the sum of two real numbers or angles and their related result. The basic results are called trigonometric identities.

The expansion of sin (α + β) is generally called addition formulae. In the geometrical proof of the addition formulae we are assuming that α, β and (α + β) are positive acute angles. But these formulae are true for any positive or negative values of α and β.

Now we will prove that, sin (α + β) = sin α cos β + cos α sin β; where α and β are positive acute angles and α + β < 90°.

Let a rotating line OX rotate about O in the anti-clockwise direction. From starting position to its initial position OX makes out an acute ∠XOY = α.

Again, the rotating line rotates further in the same direction and starting from the position OY makes out an acute ∠YOZ = β.

Thus, ∠XOZ = α + β < 90°.    

We are suppose to prove that, sin (α + β) = sin α cos β + cos α sin β.



Construction: On the bounding line of the compound angle (α + β) take a point A on OZ, and draw AB and AC perpendiculars to OX and OY respectively. Again, from C draw perpendiculars CD and CE upon OX and AB respectively.

Proof of Compound Angle Formula sin (α + β)

Proof: From triangle ACE we get, ∠EAC = 90° - ∠ACE = ∠ECO = alternate ∠COX = α.

Now, from the right-angled triangle AOB we get,

sin (α + β) = ABOA

               = AE+EBOA

               = AEOA + EBOA

               = AEOA + CDOA

               = AEACACOA + CDOCOCOA

               = cos ∠EAC sin β + sin α cos β

               = sin α cos β + cos α sin β, (since we know, ∠EAC = α)

Therefore, sin (α + β) = sin α cos β + cos α sin β.         Proved.


1. Using the t-ratios of 30° and 45°, evaluate sin 75°

Solution:

sin 75°

= sin (45° + 30°)

= sin 45° cos 30° + cos 45° sin 30

= 1232 + 1212

= 3+122

 

2. From the formula of sin (α + β) deduce the formulae of cos (α + β) and cos (α - β).

Solution:

We know that, sin (α + β) = sin α cos β + cos α sin β …….. (i)

Replacing α by (90° + α) on both sides of (i) we get,

sin (90° + α + β)

= sin {(90° + α) + β} = sin (90° + α) cos β + cos (90° + α) sin β, [Applying the formula of sin (α + β)]

⇒ sin {90° + (α + β)} = cos α cos β - sin α sin β, [since sin (90° + α) = cos α and cos (90° + α) = - sin α]

⇒ cos (α + β) = cos α cos β - sin α sin β …….. (ii)

Again, replacing β by (- β) on both sides of (ii) we get,

cos (α - β) = cos α cos (- β) - sin α sin (- β)

⇒ cos (α - β) = cos α cos β + sin α sin β, [since cos (- β) = cos β and sin (- β) = - sin β]

 

3. If sin x = 35, cos y = -1213 and x, y both lie in the second quadrant, find the value of sin (x + y).

Solution:

Given, sin x = 35, cos y = -1213 and x, y both lie in the second quadrant.

We know that cos2 x = 1 - sin2 x = 1 - (35)2 = 1 - 925 = 1625

⇒ cos x = ± 45.

Since x lies in the second quadrant, cos x is – ve

Therefore, cos x = -45.

Also, sin2 y = 1 - cos2 y = 1 - (-1213)2 = 1 - 144169 = 25169

⇒ sin y = ± 513

Since y lies in the second quadrant, sin y is + ve

Therefore, sin y = 513

Now, sin (x + y) = sin x cos y + cos x sin y

                       = 35 ∙ (- 1213) + (- 45) ∙ 513

                       = - 3665 - 2065

                       = - 5665


4. If m sin (α + x) = n sin (α + y), show that, tan α = nsinymsinxmcosxncosy

Solution:

Given, m sin (α + x) = n sin (α + y)

Therefore, m (sin α cos x + cos α sin x) = n (sin α cos y+ cos α sin y), [Applying the formula of sin (α + β)]

m sin α cos x + m cos α sin x = n sin α cos y + n cos α sin y,

or, m sin α cos x - n sin α cos y = n cos α sin y - m cos α sin x

or, sin α (m cos x - n cos y) = cos α (n sin y - m sin x)

or, sinαcosαnsinymsinxmcosxncosy.           

or, tan α = nsinymsinxmcosxncosy.   Proved.

 Compound Angle





11 and 12 Grade Math

From Proof of Compound Angle Formula sin (α + β) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Area of Rectangle Square and Triangle | Formulas| Area of Plane Shapes

    Jul 18, 25 10:38 AM

    Area of a Square of Side 1 cm
    Area of a closed plane figure is the amount of surface enclosed within its boundary. Look at the given figures. The shaded region of each figure denotes its area. The standard unit, generally used for…

    Read More

  2. What is Area in Maths? | Units to find Area | Conversion Table of Area

    Jul 17, 25 01:06 AM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More

  3. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 17, 25 12:40 AM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  4. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 11:46 PM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More

  5. Perimeter of a Figure | Perimeter of a Simple Closed Figure | Examples

    Jul 16, 25 02:33 AM

    Perimeter of a Figure
    Perimeter of a figure is explained here. Perimeter is the total length of the boundary of a closed figure. The perimeter of a simple closed figure is the sum of the measures of line-segments which hav…

    Read More