Subscribe to our YouTube channel for the latest videos, updates, and tips.


Proof of Compound Angle Formula
sin (α + β)

We will learn step-by-step the proof of compound angle formula sin (α + β). Here we will derive formula for trigonometric function of the sum of two real numbers or angles and their related result. The basic results are called trigonometric identities.

The expansion of sin (α + β) is generally called addition formulae. In the geometrical proof of the addition formulae we are assuming that α, β and (α + β) are positive acute angles. But these formulae are true for any positive or negative values of α and β.

Now we will prove that, sin (α + β) = sin α cos β + cos α sin β; where α and β are positive acute angles and α + β < 90°.

Let a rotating line OX rotate about O in the anti-clockwise direction. From starting position to its initial position OX makes out an acute ∠XOY = α.

Again, the rotating line rotates further in the same direction and starting from the position OY makes out an acute ∠YOZ = β.

Thus, ∠XOZ = α + β < 90°.    

We are suppose to prove that, sin (α + β) = sin α cos β + cos α sin β.



Construction: On the bounding line of the compound angle (α + β) take a point A on OZ, and draw AB and AC perpendiculars to OX and OY respectively. Again, from C draw perpendiculars CD and CE upon OX and AB respectively.

Proof of Compound Angle Formula sin (α + β)

Proof: From triangle ACE we get, ∠EAC = 90° - ∠ACE = ∠ECO = alternate ∠COX = α.

Now, from the right-angled triangle AOB we get,

sin (α + β) = \(\frac{AB}{OA}\)

               = \(\frac{AE + EB}{OA}\)

               = \(\frac{AE}{OA}\) + \(\frac{EB}{OA}\)

               = \(\frac{AE}{OA}\) + \(\frac{CD}{OA}\)

               = \(\frac{AE}{AC}\) ∙ \(\frac{AC}{OA}\) + \(\frac{CD}{OC}\) ∙ \(\frac{OC}{OA}\)

               = cos ∠EAC sin β + sin α cos β

               = sin α cos β + cos α sin β, (since we know, ∠EAC = α)

Therefore, sin (α + β) = sin α cos β + cos α sin β.         Proved.


1. Using the t-ratios of 30° and 45°, evaluate sin 75°

Solution:

sin 75°

= sin (45° + 30°)

= sin 45° cos 30° + cos 45° sin 30

= \(\frac{1}{√2}\) ∙ \(\frac{√3}{2}\) + \(\frac{1}{√2}\) ∙ \(\frac{1}{2}\)

= \(\frac{√3 + 1}{2√2}\)

 

2. From the formula of sin (α + β) deduce the formulae of cos (α + β) and cos (α - β).

Solution:

We know that, sin (α + β) = sin α cos β + cos α sin β …….. (i)

Replacing α by (90° + α) on both sides of (i) we get,

sin (90° + α + β)

= sin {(90° + α) + β} = sin (90° + α) cos β + cos (90° + α) sin β, [Applying the formula of sin (α + β)]

⇒ sin {90° + (α + β)} = cos α cos β - sin α sin β, [since sin (90° + α) = cos α and cos (90° + α) = - sin α]

⇒ cos (α + β) = cos α cos β - sin α sin β …….. (ii)

Again, replacing β by (- β) on both sides of (ii) we get,

cos (α - β) = cos α cos (- β) - sin α sin (- β)

⇒ cos (α - β) = cos α cos β + sin α sin β, [since cos (- β) = cos β and sin (- β) = - sin β]

 

3. If sin x = \(\frac{3}{5}\), cos y = -\(\frac{12}{13}\) and x, y both lie in the second quadrant, find the value of sin (x + y).

Solution:

Given, sin x = \(\frac{3}{5}\), cos y = -\(\frac{12}{13}\) and x, y both lie in the second quadrant.

We know that cos\(^{2}\) x = 1 - sin\(^{2}\) x = 1 - (\(\frac{3}{5}\))\(^{2}\) = 1 - \(\frac{9}{25}\) = \(\frac{16}{25}\)

⇒ cos x = ± \(\frac{4}{5}\).

Since x lies in the second quadrant, cos x is – ve

Therefore, cos x = -\(\frac{4}{5}\).

Also, sin\(^{2}\) y = 1 - cos\(^{2}\) y = 1 - (-\(\frac{12}{13}\))\(^{2}\) = 1 - \(\frac{144}{169}\) = \(\frac{25}{169}\)

⇒ sin y = ± \(\frac{5}{13}\)

Since y lies in the second quadrant, sin y is + ve

Therefore, sin y = \(\frac{5}{13}\)

Now, sin (x + y) = sin x cos y + cos x sin y

                       = \(\frac{3}{5}\) ∙ (- \(\frac{12}{13}\)) + (- \(\frac{4}{5}\)) ∙ \(\frac{5}{13}\)

                       = - \(\frac{36}{65}\) - \(\frac{20}{65}\)

                       = - \(\frac{56}{65}\)


4. If m sin (α + x) = n sin (α + y), show that, tan α = \(\frac{n sin y  -  m sin x}{m cos x  -  n cos y}\)

Solution:

Given, m sin (α + x) = n sin (α + y)

Therefore, m (sin α cos x + cos α sin x) = n (sin α cos y+ cos α sin y), [Applying the formula of sin (α + β)]

m sin α cos x + m cos α sin x = n sin α cos y + n cos α sin y,

or, m sin α cos x - n sin α cos y = n cos α sin y - m cos α sin x

or, sin α (m cos x - n cos y) = cos α (n sin y - m sin x)

or, \(\frac{sin α}{cos  α}\) = \(\frac{n sin y  -  m sin x}{m cos x  -  n cos y}\).           

or, tan α = \(\frac{n sin y  -  m sin x}{m cos x  -  n cos y}\).   Proved.

 Compound Angle





11 and 12 Grade Math

From Proof of Compound Angle Formula sin (α + β) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Calculating Profit Percent and Loss Percent | Profit and Loss Formulas

    Jun 12, 25 12:48 PM

    In calculating profit percent and loss percent we will learn about the basic concepts of profit and loss. We will recall facts and formula while calculating profit percent and loss percent. Now we wil

    Read More

  2. Word Problems on Profit and Loss Worksheet |Cost Price |Selling Price

    Jun 11, 25 04:26 PM

    Word Problems on Profit and Loss Worksheet
    In word problems on profit and loss worksheet you will get different types of problems on cost price and selling price, profit and loss, calculating profit o loss, calculating selling price and cost p…

    Read More

  3. Round off to Nearest 1000 |Rounding Numbers to Nearest Thousand| Rules

    Jun 11, 25 03:12 PM

    Round off to Nearest 1000
    Round off to nearest 1000 is discussed here. While rounding off to the nearest 1000, if the digit in the hundreds place is between 0 – 4 i.e., < 5, then the hundreds place is replaced by ‘0’. If the d…

    Read More

  4. Round off to Nearest 100 | Rounding Numbers To Nearest Hundred | Rules

    Jun 11, 25 03:13 AM

    Round off to Nearest 100
    While rounding off to the nearest hundred, if the digit in the tens place is between 0 – 4 i.e. < 5, then the tens place is replaced by ‘0’. If the digit in the units place is equal to or >5, then the…

    Read More

  5. Round off to Nearest 10 |How To Round off to Nearest 10?|Rounding Rule

    Jun 10, 25 05:36 PM

    Rounding to the Nearest 10
    Round off to nearest 10 is discussed here. Rounding can be done for every place-value of number. To round off a number to the nearest tens, we round off to the nearest multiple of ten. A large number…

    Read More