Proof of Tangent Formula tan (α + β)

We will learn step-by-step the proof of tangent formula tan (α + β).

Prove that tan (α + β) = \(\frac{tan α + tan β}{1 - tan α tan β}\)

Proof: tan (α + β) = \(\frac{sin (α + β)}{cos (α + β)}\)

                         = \(\frac{sin α cos β + cos α sin β}{cos α cos β - sin α sin β}\)

                         = \(\frac{\frac{sin α cos β}{cos α cos β} + \frac{cos α sin β}{cos α cos β}}{\frac{cos α cos β}{cos α cos β} - \frac{sin α sin β}{cos α cos β}}\), [dividing numerator and denominator by cos α cos β]

                         = \(\frac{tan α + tan β}{1 - tan α tan β}\)          Proved

Therefore, tan (α + β) = \(\frac{tan α + tan β}{1 - tan α tan β}\)

Solved examples using the proof of tangent formula tan (α + β):

1. Find the values of tan 75°

Solution:

tan 75° = tan ( 45° + 30°)

= tan 45° + tan 30°/1 - tan 45° tan 30°

= 1 + 1/√3/1 - (1 . 1/√3)

= √3 + 1/√3 - 1

= (√3+1)^2/(√3 - 1)( √3+1)

= (√3)^2 + 2 ∙ √3 + (1)^2/(3 - 1)

= 3 + 1 + 2 ∙ √3/(3 - 1)

= (4 + 2√3)/2

= 2 + √3

 

2. Prove that tan 50° = tan 40° + 2 tan 10°

Solution:

tan 50° = tan (40° + 10°)

⇒ tan 50° = tan 40° + tan 10/1 - tan 40° tan 10°

⇒ tan 50° (1 - tan 40° tan 10°) = tan 40° + tan 10°

⇒ tan 50° = tan 40° + tan 10° + tan 50° tan 40° tan 10°

⇒ tan 50° = tan 40° + tan 10° + 1 ∙ tan 10°, [since tan 50° = tan (90° - 40°) = cot 40° = 1/tan 40° ⇒ tan 50° tan 40° = 1]

⇒ tan 50° = tan 40° + 2 tan 10°              Proved

 

3. Prove that tan (45° + θ) = 1 + tan θ/1 - tan θ.                          

Solution:

L. H. S. = tan (45° + θ)

= tan 45° + tan θ /1 - tan 45° tan θ

= 1 + tan θ /1 - tan θ (Since we know that, tan 45° = 1)              Proved

 

3. Prove the identities:  tan 71° = cos 26° + sin 26°/cos 26° - sin 26°

Solution:

tan 71° = tan (45° + 26°)

           = \(\frac{tan 45° + tan 26°}{1 - tan 45° tan 26° }\)

           = 1 + tan 26°/1 - tan 26°

           = [1 + sin 26°/cos 26°]/[1 - sin 26°/cos 26°]

           = cos 26° + sin 26°/cos 26° - sin 26°              Proved

 

4. Show that tan 3x tan 2x tan x = tan 3x - tan 2x - tan x

Solution:

We know that 3x = 2x + x

Therefore, tan 3x = tan (2x + x) = \(\frac{tan 2x + tan x}{1 - tan 2x tan x}\)

⇒ tan 2x + tan x = tan 3x - tan 3x tan 2x tan x

⇒ tan 3x - tan 3x tan x = tan 3x - tan 2x - tan x              Proved

 Compound Angle






11 and 12 Grade Math

From Proof of Tangent Formula tan (α + β) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More