Proof of Compound Angle Formula
cos (α - β)

We will learn step-by-step the proof of compound angle formula cos (α - β). Here we will derive formula for trigonometric function of the difference of two real numbers or angles and their related result. The basic results are called trigonometric identities.

The expansion of cos (α - β) is generally called subtraction formulae. In the geometrical proof of the subtraction formulae we are assuming that α, β are positive acute angles and α > β. But these formulae are true for any positive or negative values of α and β.

Now we will prove that, cos (α - β) = cos α cos β + sin α sin β; where α and β are positive acute angles and α > β.

Let a rotating line OX rotate about O in the anti-clockwise direction. From starting position to its initial position OX makes out an acute ∠XOY = α.

Now, the rotating line rotates further in the clockwise direction and starting from the position OY makes out an acute ∠YOZ = β (which is < α).

Thus, ∠XOZ = α - β.    

We are suppose to prove that, cos (α - β) = cos α cos β + sin α sin β.



Construction: On the bounding line of the compound angle (α - β) take a point A on OZ and draw AB and AC perpendiculars to OX and OY respectively. Again, from C draw perpendiculars CD and CE upon OX and produced BA respectively.

Proof of Compound Angle Formula cos (α - β)


Proof: From triangle ACE we get, ∠EAC = 90° - ∠ACE = ∠YCE = corresponding ∠XOY = α.

Now, from the right-angled triangle AOB we get,

cos (α - β) = \(\frac{OB}{OA}\)

                = \(\frac{OD   +   DB}{OA}\)

                = \(\frac{OD}{OA}\) + \(\frac{DB}{OA}\)

                = \(\frac{OD}{OA}\) + \(\frac{CE}{OA}\)

                = \(\frac{OD}{OC}\) ∙ \(\frac{OC}{OA}\) + \(\frac{CE}{AC}\) ∙ \(\frac{AC}{OA}\)

                = cos α cos β + sin ∠CAE sin β  

                = cos α cos β + sin α sin β, (since we know, ∠CAE = α)

Therefore, cos (α - β) = cos α cos β + sin α sin β. Proved

 

1. Using the t-ratios of 30° and 45°, find the values of cos 15°.             

Solution:    

   cos 15°

= cos (45° - 30°)

= cos 45° cos 30° - sin 45° sin 30°

= (\(\frac{1}{√2}\) ∙ \(\frac{√3}{2}\)) + (\(\frac{1}{√2}\) ∙ \(\frac{1}{2}\))

= \(\frac{√3 + 1}{2√2}\)


2. Prove the identities: sin 63°32’ sin 33°32’ + sin 26°28’ sin 56°28 = √3/2

Solution:

L. H. S. = Sin 63°32’ Sin 33°32’ + sin 26°28’ sin 56°28’

= sin(90° - 26° 28’) sin (90° - 56° 28’) + sin 26°28’ sin 56°28’ 

= cos 26°28’ cos 56°28’ + sin 26°28’ sin 56°28’

= cos (56°28’ - 26°28’)

= cos 30°

= \(\frac{√3}{2}\).      Proved

 

3. Prove the identities:

1 + tan θ ∙ tan θ/2 = sec θ

Solution:     

L.H.S = 1 + tan θ. tan θ/2

= 1 + \(\frac{sin  θ  ∙  sin  θ/2}{cos  θ  ∙  cos  θ/2}\)

= \(\frac{cos  θ   cos  θ/2  +  sin  θ   sin  θ/2}{cos θ   cos  θ/2 }\)

= \(\frac{cos(θ  -  θ/2)}{cos  θ   cos  θ/2}\)

= \(\frac{cos  θ/2}{cos  θ  ∙  cos  θ/2}\)

= \(\frac{1}{cos  θ }\)

= sec θ.         Proved

 

4. Prove that cos 70° cos 10° + sin 70° sin 10° = ½

Solution:

L.H.S. = cos 70° cos 10° + sin 70° sin 10°

= cos (70° - 10°)

= cos 60

= ½ = R.H.S.     Proved

 

5. Find the maximum and minimum values of 3 cos θ + 4sin θ + 5.

Solution:    

Let, r cos α = 3 …………… (i) and r sin α = 4 …………… (ii)

Now square the equation (i) and (ii) then add

r\(^{2}\) cos\(^{2}\) α + r\(^{2}\) sin\(^{2}\) α = 3\(^{2}\) + 4\(^{2}\)

⇒ r\(^{2}\) (cos\(^{2}\) α + sin\(^{2}\) α) = 25    

⇒ r\(^{2}\) (1) = 25, since cos\(^{2}\) α + sin\(^{2}\) α = 1

⇒ r = 5, [Taking square root on both sides]

Now equation (i) divided by (ii) we get,

\(\frac{r  sin α}{r  cos α}\) = 4/3                

⇒ tan α = 4/3

Therefore, 3 cos θ + 4 sin θ + 5 = r cos α cos θ + r sin α sin θ + 5

                                           = 5 cos (θ - α) + 5

Since, -1 ≤ cos (θ - α) ≤ 1

Therefore, -5 ≤ 5 cos (θ - α) ≤ 5

⇒ -5 + 5 ≤ 5 cos (θ - α) + 5 ≤ 5 + 5

⇒ 0 ≤ 5 cos (θ - α) + 5 ≤ 10

From this inequality it readily follows that the maximum and minimum values of [5 cos (θ - α) + 5] i.e., (3 cos θ + 4 sin θ + 5) are 10 and 0 respectively.


6. Prove that sin (n + 1) x sin (n + 2) x + cos (n + 1) x cos (n + 2) x = cos x

Solution:

L.H.S. = sin (n + 1) x sin (n + 2) x + cos (n + 1) x cos (n + 2) x

         = cos (n + 2) x cos (n + 1) x + sin (n + 2) x sin (n + 1) x

         = cos {(n + 2) x - (n + 1) x)

         = cos x = R.H.S.   Proved

 Compound Angle







11 and 12 Grade Math

From Proof of Compound Angle Formula cos (α - β) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 15, 24 10:27 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  3. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More