Proof of Compound Angle Formula
cos (α - β)

We will learn step-by-step the proof of compound angle formula cos (α - β). Here we will derive formula for trigonometric function of the difference of two real numbers or angles and their related result. The basic results are called trigonometric identities.

The expansion of cos (α - β) is generally called subtraction formulae. In the geometrical proof of the subtraction formulae we are assuming that α, β are positive acute angles and α > β. But these formulae are true for any positive or negative values of α and β.

Now we will prove that, cos (α - β) = cos α cos β + sin α sin β; where α and β are positive acute angles and α > β.

Let a rotating line OX rotate about O in the anti-clockwise direction. From starting position to its initial position OX makes out an acute ∠XOY = α.

Now, the rotating line rotates further in the clockwise direction and starting from the position OY makes out an acute ∠YOZ = β (which is < α).

Thus, ∠XOZ = α - β.    

We are suppose to prove that, cos (α - β) = cos α cos β + sin α sin β.



Construction: On the bounding line of the compound angle (α - β) take a point A on OZ and draw AB and AC perpendiculars to OX and OY respectively. Again, from C draw perpendiculars CD and CE upon OX and produced BA respectively.

Proof of Compound Angle Formula cos (α - β)


Proof: From triangle ACE we get, ∠EAC = 90° - ∠ACE = ∠YCE = corresponding ∠XOY = α.

Now, from the right-angled triangle AOB we get,

cos (α - β) = \(\frac{OB}{OA}\)

                = \(\frac{OD   +   DB}{OA}\)

                = \(\frac{OD}{OA}\) + \(\frac{DB}{OA}\)

                = \(\frac{OD}{OA}\) + \(\frac{CE}{OA}\)

                = \(\frac{OD}{OC}\) ∙ \(\frac{OC}{OA}\) + \(\frac{CE}{AC}\) ∙ \(\frac{AC}{OA}\)

                = cos α cos β + sin ∠CAE sin β  

                = cos α cos β + sin α sin β, (since we know, ∠CAE = α)

Therefore, cos (α - β) = cos α cos β + sin α sin β. Proved

 

1. Using the t-ratios of 30° and 45°, find the values of cos 15°.             

Solution:    

   cos 15°

= cos (45° - 30°)

= cos 45° cos 30° - sin 45° sin 30°

= (\(\frac{1}{√2}\) ∙ \(\frac{√3}{2}\)) + (\(\frac{1}{√2}\) ∙ \(\frac{1}{2}\))

= \(\frac{√3 + 1}{2√2}\)


2. Prove the identities: sin 63°32’ sin 33°32’ + sin 26°28’ sin 56°28 = √3/2

Solution:

L. H. S. = Sin 63°32’ Sin 33°32’ + sin 26°28’ sin 56°28’

= sin(90° - 26° 28’) sin (90° - 56° 28’) + sin 26°28’ sin 56°28’ 

= cos 26°28’ cos 56°28’ + sin 26°28’ sin 56°28’

= cos (56°28’ - 26°28’)

= cos 30°

= \(\frac{√3}{2}\).      Proved

 

3. Prove the identities:

1 + tan θ ∙ tan θ/2 = sec θ

Solution:     

L.H.S = 1 + tan θ. tan θ/2

= 1 + \(\frac{sin  θ  ∙  sin  θ/2}{cos  θ  ∙  cos  θ/2}\)

= \(\frac{cos  θ   cos  θ/2  +  sin  θ   sin  θ/2}{cos θ   cos  θ/2 }\)

= \(\frac{cos(θ  -  θ/2)}{cos  θ   cos  θ/2}\)

= \(\frac{cos  θ/2}{cos  θ  ∙  cos  θ/2}\)

= \(\frac{1}{cos  θ }\)

= sec θ.         Proved

 

4. Prove that cos 70° cos 10° + sin 70° sin 10° = ½

Solution:

L.H.S. = cos 70° cos 10° + sin 70° sin 10°

= cos (70° - 10°)

= cos 60

= ½ = R.H.S.     Proved

 

5. Find the maximum and minimum values of 3 cos θ + 4sin θ + 5.

Solution:    

Let, r cos α = 3 …………… (i) and r sin α = 4 …………… (ii)

Now square the equation (i) and (ii) then add

r\(^{2}\) cos\(^{2}\) α + r\(^{2}\) sin\(^{2}\) α = 3\(^{2}\) + 4\(^{2}\)

⇒ r\(^{2}\) (cos\(^{2}\) α + sin\(^{2}\) α) = 25    

⇒ r\(^{2}\) (1) = 25, since cos\(^{2}\) α + sin\(^{2}\) α = 1

⇒ r = 5, [Taking square root on both sides]

Now equation (i) divided by (ii) we get,

\(\frac{r  sin α}{r  cos α}\) = 4/3                

⇒ tan α = 4/3

Therefore, 3 cos θ + 4 sin θ + 5 = r cos α cos θ + r sin α sin θ + 5

                                           = 5 cos (θ - α) + 5

Since, -1 ≤ cos (θ - α) ≤ 1

Therefore, -5 ≤ 5 cos (θ - α) ≤ 5

⇒ -5 + 5 ≤ 5 cos (θ - α) + 5 ≤ 5 + 5

⇒ 0 ≤ 5 cos (θ - α) + 5 ≤ 10

From this inequality it readily follows that the maximum and minimum values of [5 cos (θ - α) + 5] i.e., (3 cos θ + 4 sin θ + 5) are 10 and 0 respectively.


6. Prove that sin (n + 1) x sin (n + 2) x + cos (n + 1) x cos (n + 2) x = cos x

Solution:

L.H.S. = sin (n + 1) x sin (n + 2) x + cos (n + 1) x cos (n + 2) x

         = cos (n + 2) x cos (n + 1) x + sin (n + 2) x sin (n + 1) x

         = cos {(n + 2) x - (n + 1) x)

         = cos x = R.H.S.   Proved

 Compound Angle







11 and 12 Grade Math

From Proof of Compound Angle Formula cos (α - β) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 18, 24 02:58 AM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  2. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 18, 24 02:15 AM

    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  3. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More

  4. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 18, 24 12:31 AM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Apr 17, 24 01:32 PM

    Duration of Time
    We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton every evening. Yesterday, their game started at 5 : 15 p.m.

    Read More