# Proof of Compound Angle Formula cos$$^{2}$$ α - sin$$^{2}$$ β

We will learn step-by-step the proof of compound angle formula cos^2 α - sin^2 β. We need to take the help of the formula of cos (α + β) and cos (α - β) to proof the formula of cos^2 α - sin^2 β for any positive or negative values of α and β.

Prove that: cos (α + β) cos (α - β) = cos$$^{2}$$ α - sin$$^{2}$$ β = cos$$^{2}$$ β - sin$$^{2}$$ α.

Proof: cos (α + β) cos (α - β)

= (cos α cos β - sin α sin β) (cos α cos β + sin α sin β)

= (cos α cos β)$$^{2}$$ - (sin α sin β)$$^{2}$$

= cos$$^{2}$$ α cos$$^{2}$$ β - sin$$^{2}$$ α sin$$^{2}$$ β

= cos$$^{2}$$ α (1 - sin$$^{2}$$ β) - (1 - cos$$^{2}$$ α) sin$$^{2}$$ β, [since we know, cos$$^{2}$$ θ = 1 - sin$$^{2}$$ θ]

= cos$$^{2}$$ α - cos$$^{2}$$ α sin$$^{2}$$ β - sin$$^{2}$$ β + cos$$^{2}$$ α sin$$^{2}$$ β

= cos$$^{2}$$ α - sin$$^{2}$$ β

= 1 - sin$$^{2}$$ α - (1 - cos$$^{2}$$ β), [since we know, cos$$^{2}$$ θ = 1 - sin$$^{2}$$ θ and sin$$^{2}$$ θ = 1 - cos$$^{2}$$ θ]

= 1 - sin$$^{2}$$ α - 1 + cos$$^{2}$$ β

= cos$$^{2}$$ β - sin$$^{2}$$ α                     Proved

Therefore, cos (α + β) cos (α - β) = cos$$^{2}$$ α - sin$$^{2}$$ β = cos$$^{2}$$ β - sin$$^{2}$$ α

Solved examples using the proof of compound angle formula cos$$^{2}$$α - sin$$^{2}$$ β:

1. Prove that: cos$$^{2}$$ 2x - sin$$^{2}$$ x = cos x cos 3x.

Solution:

L.H.S. = cos$$^{2}$$ 2x - sin$$^{2}$$ x

= cos (2x + x) cos (2x - x), [since we know cos$$^{2}$$ α - sin$$^{2}$$ β = cos (α + β) cos (α - β)]

= cos 3x cos x = R.H.S.                         Proved

2. Find the value of cos$$^{2}$$ ($$\frac{π}{8}$$ - $$\frac{θ}{2}$$) - sin$$^{2}$$ ($$\frac{π}{8}$$ + $$\frac{θ}{2}$$).

Solution:

cos$$^{2}$$ ($$\frac{π}{8}$$ - $$\frac{θ}{2}$$) - sin$$^{2}$$ ($$\frac{π}{8}$$ + $$\frac{θ}{2}$$)

= cos {($$\frac{π}{8}$$ - $$\frac{θ}{2}$$) + ($$\frac{π}{8}$$ + $$\frac{θ}{2}$$)} cos {($$\frac{π}{8}$$ - $$\frac{θ}{2}$$) - ($$\frac{π}{8}$$ + $$\frac{θ}{2}$$)},

[since we know, cos$$^{2}$$ α - sin$$^{2}$$ β = cos (α + β)

cos (α - β)]

= cos {$$\frac{π}{8}$$ - $$\frac{θ}{2}$$ + $$\frac{π}{8}$$ + $$\frac{θ}{2}$$} cos {$$\frac{π}{8}$$ - $$\frac{θ}{2}$$ - $$\frac{π}{8}$$ - $$\frac{θ}{2}$$}

= cos {$$\frac{π}{8}$$ + $$\frac{π}{8}$$} cos {- $$\frac{θ}{2}$$ - $$\frac{θ}{2}$$}

= cos $$\frac{π}{4}$$ cos (- θ)

= cos $$\frac{π}{4}$$ cos θ, [since we know, cos (- θ) = cos θ)

= $$\frac{1}{√2}$$ ∙ cos θ [we know, cos $$\frac{π}{4}$$ = $$\frac{1}{√2}$$]

3. Evaluate: cos$$^{2}$$ ($$\frac{π}{4}$$ + x) - sin$$^{2}$$ ($$\frac{π}{4}$$ - x)

Solution:

cos$$^{2}$$ ($$\frac{π}{4}$$ + x) - sin$$^{2}$$ ($$\frac{π}{4}$$ - x)

= cos {($$\frac{π}{4}$$ + x) + ($$\frac{π}{4}$$ - x)} cos {($$\frac{π}{4}$$ + x) - ($$\frac{π}{4}$$ - x)}, [since we know, cos$$^{2}$$ β - sin$$^{2}$$ α = cos (α + β)

cos (α - β)]

= cos {$$\frac{π}{4}$$ + x + $$\frac{π}{4}$$ - x} cos {$$\frac{π}{4}$$ + x - $$\frac{π}{4}$$ + x}

= cos {$$\frac{π}{4}$$+$$\frac{π}{4}$$} cos {x + x}

= cos $$\frac{π}{4}$$ cos 2x

= 0 ∙ cos 2x, [Since we know, cos $$\frac{π}{4}$$ = 0]

= 0

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Fraction as a Part of Collection | Pictures of Fraction | Fractional

Feb 24, 24 04:33 PM

How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

2. ### Fraction of a Whole Numbers | Fractional Number |Examples with Picture

Feb 24, 24 04:11 PM

Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

3. ### Identification of the Parts of a Fraction | Fractional Numbers | Parts

Feb 24, 24 04:10 PM

We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

4. ### Numerator and Denominator of a Fraction | Numerator of the Fraction

Feb 24, 24 04:09 PM

What are the numerator and denominator of a fraction? We have already learnt that a fraction is written with two numbers arranged one over the other and separated by a line.

5. ### Roman Numerals | System of Numbers | Symbol of Roman Numerals |Numbers

Feb 24, 24 10:59 AM

How to read and write roman numerals? Hundreds of year ago, the Romans had a system of numbers which had only seven symbols. Each symbol had a different value and there was no symbol for 0. The symbol…