Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Proof of Compound Angle Formula
cos\(^{2}\) α - sin\(^{2}\) β

We will learn step-by-step the proof of compound angle formula cos^2 α - sin^2 β. We need to take the help of the formula of cos (α + β) and cos (α - β) to proof the formula of cos^2 α - sin^2 β for any positive or negative values of α and β.

Prove that: cos (α + β) cos (α - β) = cos\(^{2}\) α - sin\(^{2}\) β = cos\(^{2}\) β - sin\(^{2}\) α.

Proof: cos (α + β) cos (α - β)

= (cos α cos β - sin α sin β) (cos α cos β + sin α sin β)

= (cos α cos β)\(^{2}\) - (sin α sin β)\(^{2}\)

= cos\(^{2}\) α cos\(^{2}\) β - sin\(^{2}\) α sin\(^{2}\) β

= cos\(^{2}\) α (1 - sin\(^{2}\) β) - (1 - cos\(^{2}\) α) sin\(^{2}\) β, [since we know, cos\(^{2}\) θ = 1 - sin\(^{2}\) θ]

= cos\(^{2}\) α - cos\(^{2}\) α sin\(^{2}\) β - sin\(^{2}\) β + cos\(^{2}\) α sin\(^{2}\) β

= cos\(^{2}\) α - sin\(^{2}\) β

= 1 - sin\(^{2}\) α - (1 - cos\(^{2}\) β), [since we know, cos\(^{2}\) θ = 1 - sin\(^{2}\) θ and sin\(^{2}\) θ = 1 - cos\(^{2}\) θ]

= 1 - sin\(^{2}\) α - 1 + cos\(^{2}\) β

= cos\(^{2}\) β - sin\(^{2}\) α                     Proved

Therefore, cos (α + β) cos (α - β) = cos\(^{2}\) α - sin\(^{2}\) β = cos\(^{2}\) β - sin\(^{2}\) α


Solved examples using the proof of compound angle formula cos\(^{2}\)α - sin\(^{2}\) β:

1. Prove that: cos\(^{2}\) 2x - sin\(^{2}\) x = cos x cos 3x.

Solution:

L.H.S. = cos\(^{2}\) 2x - sin\(^{2}\) x

= cos (2x + x) cos (2x - x), [since we know cos\(^{2}\) α - sin\(^{2}\) β = cos (α + β) cos (α - β)]

= cos 3x cos x = R.H.S.                         Proved

 

2. Find the value of cos\(^{2}\) (\(\frac{π}{8}\) - \(\frac{θ}{2}\)) - sin\(^{2}\) (\(\frac{π}{8}\) + \(\frac{θ}{2}\)).

Solution:

cos\(^{2}\) (\(\frac{π}{8}\) - \(\frac{θ}{2}\)) - sin\(^{2}\) (\(\frac{π}{8}\) + \(\frac{θ}{2}\))

= cos {(\(\frac{π}{8}\) - \(\frac{θ}{2}\)) + (\(\frac{π}{8}\) + \(\frac{θ}{2}\))} cos {(\(\frac{π}{8}\) - \(\frac{θ}{2}\)) - (\(\frac{π}{8}\) + \(\frac{θ}{2}\))},

[since we know, cos\(^{2}\) α - sin\(^{2}\) β = cos (α + β)

cos (α - β)]

= cos {\(\frac{π}{8}\) - \(\frac{θ}{2}\) + \(\frac{π}{8}\) + \(\frac{θ}{2}\)} cos {\(\frac{π}{8}\) - \(\frac{θ}{2}\) - \(\frac{π}{8}\) - \(\frac{θ}{2}\)}

= cos {\(\frac{π}{8}\) + \(\frac{π}{8}\)} cos {- \(\frac{θ}{2}\) - \(\frac{θ}{2}\)}

= cos \(\frac{π}{4}\) cos (- θ)

= cos \(\frac{π}{4}\) cos θ, [since we know, cos (- θ) = cos θ)

= \(\frac{1}{√2}\) ∙ cos θ [we know, cos \(\frac{π}{4}\) = \(\frac{1}{√2}\)]

 

3. Evaluate: cos\(^{2}\) (\(\frac{π}{4}\) + x) - sin\(^{2}\) (\(\frac{π}{4}\) - x)

Solution:

cos\(^{2}\) (\(\frac{π}{4}\) + x) - sin\(^{2}\) (\(\frac{π}{4}\) - x)

= cos {(\(\frac{π}{4}\) + x) + (\(\frac{π}{4}\) - x)} cos {(\(\frac{π}{4}\) + x) - (\(\frac{π}{4}\) - x)}, [since we know, cos\(^{2}\) β - sin\(^{2}\) α = cos (α + β)

cos (α - β)]

= cos {\(\frac{π}{4}\) + x + \(\frac{π}{4}\) - x} cos {\(\frac{π}{4}\) + x - \(\frac{π}{4}\) + x}

= cos {\(\frac{π}{4}\)+\(\frac{π}{4}\)} cos {x + x}

= cos \(\frac{π}{4}\) cos 2x

= 0 ∙ cos 2x, [Since we know, cos \(\frac{π}{4}\) = 0]

= 0

 Compound Angle






11 and 12 Grade Math

From Proof of Compound Angle Formula cos^2 α - sin^2 β to HOME PAGE


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.