Supplementary Angles


When the sum of the measures of two angles is 180°, such angles are called supplementary angles and each of them is called a supplement of the other.

The vertices of two angles may be same or different. In the given figure ∠AOC and ∠BOC are supplementary angles as ∠AOC + ∠BOC = 180°.

supplementary angles



Again, ∠QPR and ∠EDF are supplementary angles as ∠QPR + ∠EDF = 130° + 50° = 180°.

supplementary angles image


Angles of 60° and 120° are supplementary angles. 

The supplement of an angle of 110° is the angle of 70° and the supplement of an angle of 70° is the angle of 110°

Observations: 

(i) Two acute angles cannot be supplement of each other. 

(ii) Two right angles are always supplementary. 

(iii) Two obtuse angles cannot be supplement of each other. 


Worked-out Problems on Supplementary Angles:

1. Verify if 115°, 65° are a pair of supplementary angles.

Solution:

115° + 65° = 180°

Hence, they are a pair of supplementary angles.




2. Find the supplement of the angle (20 + y)°.

Solution:

Supplement of the angle (20 + y)° = 180° - (20 + y)°

= 180° - 20° - y°

= (160 - y) °



3. If angles of measures (x — 2)° and (2x + 5)° are a pair of supplementary angles. Find the measures.

Solution:

Since (x - 2)° and (2x + 5)° represent a pair of supplementary angles, then their sum must be equal to 180°.

Therefore, (x - 2) + (2x + 5) = 180

x - 2 + 2x + 5 = 180

x + 2x - 2 + 5 = 180

3x + 3 = 180

3x + 3 – 3 = 180 — 3

3x = 180 — 3

3x = 177

x = 177/3

x = 59°

Therefore, we know the value of x = 59°, put the value in place of x

x - 2

= 59 - 2

= 57°

And again, 2x + 5

= 2 × 59 + 5

= 118 + 5

= 123°

Therefore, the two supplementary angles are 57° and 123°. 



4. Two supplementary angles are in the ratio 7 : 8. Find the measure of the angles. 

Solution: 

Let the common ratio be x. 

If one angle is 7x, then the other angle is 8x. 

Therefore, 7x + 8x = 180 

15x = 180 

x = 180/15

x = 12

Put the value of x = 12

One angle is 7x 

= 7 × 12 

= 84° 

And the other angle is 8x 

= 8 × 12

= 96° 

Therefore, the two supplementary angles are 84° and 96°. 



5. In the given figure find the measure of the unknown angle. 

problems on supplementary angles



Solution:

x + 55° + 40° = 180°

The sum of angles at a point on a line on one side of it is 180°

Therefore, x + 95° = 180°

x + 95° - 95° = 180° - 95°

x = 85°


 Lines and Angles

Fundamental Geometrical Concepts

Angles

Classification of Angles

Related Angles

Some Geometric Terms and Results

Complementary Angles

Supplementary Angles

Complementary and Supplementary Angles

Adjacent Angles

Linear Pair of Angles

Vertically Opposite Angles

Parallel Lines

Transversal Line

Parallel and Transversal Lines






7th Grade Math Problems

8th Grade Math Practice 

From Supplementary Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Concept of Fractions |Concept of Half| Concept of One Fourth|Two Third

    Nov 07, 24 12:38 AM

    One-half
    Concept of fractions will help us to express different fractional parts of a whole. One-half When an article or a collection of objects is divided into two equal parts is called as half of the whole.

    Read More

  2. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 06, 24 11:59 PM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  3. 2nd Grade Division Word Problems | Worksheet on Division Word Problems

    Nov 05, 24 01:49 PM

    Division Word Problems Grade 2

    Read More

  4. 2nd Grade Division Worksheet | Dividing 2-digit by 1-digit Numbers

    Nov 05, 24 01:15 AM

    Division Fact 12 ÷ 3
    Dividing 2-digit by 1-digit Numbers

    Read More

  5. Even and Odd Numbers Between 1 and 100 | Even and Odd Numbers|Examples

    Nov 05, 24 12:55 AM

    even and odd numbers
    All the even and odd numbers between 1 and 100 are discussed here. What are the even numbers from 1 to 100? The even numbers from 1 to 100 are:

    Read More