Supplementary Angles


When the sum of the measures of two angles is 180°, such angles are called supplementary angles and each of them is called a supplement of the other.

The vertices of two angles may be same or different. In the given figure ∠AOC and ∠BOC are supplementary angles as ∠AOC + ∠BOC = 180°.

supplementary angles



Again, ∠QPR and ∠EDF are supplementary angles as ∠QPR + ∠EDF = 130° + 50° = 180°.

supplementary angles image


Angles of 60° and 120° are supplementary angles. 

The supplement of an angle of 110° is the angle of 70° and the supplement of an angle of 70° is the angle of 110°

Observations: 

(i) Two acute angles cannot be supplement of each other. 

(ii) Two right angles are always supplementary. 

(iii) Two obtuse angles cannot be supplement of each other. 


Worked-out Problems on Supplementary Angles:

1. Verify if 115°, 65° are a pair of supplementary angles.

Solution:

115° + 65° = 180°

Hence, they are a pair of supplementary angles.




2. Find the supplement of the angle (20 + y)°.

Solution:

Supplement of the angle (20 + y)° = 180° - (20 + y)°

= 180° - 20° - y°

= (160 - y) °



3. If angles of measures (x — 2)° and (2x + 5)° are a pair of supplementary angles. Find the measures.

Solution:

Since (x - 2)° and (2x + 5)° represent a pair of supplementary angles, then their sum must be equal to 180°.

Therefore, (x - 2) + (2x + 5) = 180

x - 2 + 2x + 5 = 180

x + 2x - 2 + 5 = 180

3x + 3 = 180

3x + 3 – 3 = 180 — 3

3x = 180 — 3

3x = 177

x = 177/3

x = 59°

Therefore, we know the value of x = 59°, put the value in place of x

x - 2

= 59 - 2

= 57°

And again, 2x + 5

= 2 × 59 + 5

= 118 + 5

= 123°

Therefore, the two supplementary angles are 57° and 123°. 



4. Two supplementary angles are in the ratio 7 : 8. Find the measure of the angles. 

Solution: 

Let the common ratio be x. 

If one angle is 7x, then the other angle is 8x. 

Therefore, 7x + 8x = 180 

15x = 180 

x = 180/15

x = 12

Put the value of x = 12

One angle is 7x 

= 7 × 12 

= 84° 

And the other angle is 8x 

= 8 × 12

= 96° 

Therefore, the two supplementary angles are 84° and 96°. 



5. In the given figure find the measure of the unknown angle. 

problems on supplementary angles



Solution:

x + 55° + 40° = 180°

The sum of angles at a point on a line on one side of it is 180°

Therefore, x + 95° = 180°

x + 95° - 95° = 180° - 95°

x = 85°


 Lines and Angles

Fundamental Geometrical Concepts

Angles

Classification of Angles

Related Angles

Some Geometric Terms and Results

Complementary Angles

Supplementary Angles

Complementary and Supplementary Angles

Adjacent Angles

Linear Pair of Angles

Vertically Opposite Angles

Parallel Lines

Transversal Line

Parallel and Transversal Lines






7th Grade Math Problems

8th Grade Math Practice 

From Supplementary Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

    Jul 12, 24 03:08 PM

    Fractions
    The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerato…

    Read More

  2. Worksheet on Fractions | Questions on Fractions | Representation | Ans

    Jul 12, 24 02:11 PM

    Worksheet on Fractions
    In worksheet on fractions, all grade students can practice the questions on fractions on a whole number and also on representation of a fraction. This exercise sheet on fractions can be practiced

    Read More

  3. Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

    Jul 12, 24 03:21 AM

    Fraction 8/16
    There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

    Read More

  4. Conversion of Improper Fractions into Mixed Fractions |Solved Examples

    Jul 12, 24 12:59 AM

    To convert an improper fraction into a mixed number, divide the numerator of the given improper fraction by its denominator. The quotient will represent the whole number and the remainder so obtained…

    Read More

  5. Conversion of Mixed Fractions into Improper Fractions |Solved Examples

    Jul 12, 24 12:30 AM

    Conversion of Mixed Fractions into Improper Fractions
    To convert a mixed number into an improper fraction, we multiply the whole number by the denominator of the proper fraction and then to the product add the numerator of the fraction to get the numerat…

    Read More