Complementary and Supplementary Angles


Before we solve the worked-out problems on complementary and supplementary angles we will recall the definition of complementary angles and supplementary angles.


Complementary Angles:

Two angles are called complementary angles, if their sum is one right angle i.e. 90°.

Each angle is called the complement of the other. 

Example, 20° and 70° are complementary angles, because 20° + 70° = 90°.

Clearly, 20° is the complement of 70° and 70° is the complement of 20°.

Thus, the complement of angle 53° = 90° - 53° = 37°.


Supplementary Angles:

Two angles are called supplementary angles, if their sum is two right angles i.e. 180°.

Each angle is called the supplement of the other. 

Example, 30° and 150° are supplementary angles, because 30° + 150° = 180°.

Clearly, 30° is the supplement of 150° and 150° is the supplement of 30°.

Thus, the supplement of angle 105° = 180° - 105° = 75°.


Solved problems on complementary and supplementary angles:

1. Find the complement of the angle 2/3 of 90°.

Solution:

Convert 2/3 of 90°

2/3 × 90° = 60°

Complement of 60° = 90° - 60° = 30°

Therefore, complement of the angle 2/3 of 90° = 30°



2. Find the supplement of the angle 4/5 of 90°.

Solution:

Convert 4/5 of 90°

4/5 × 90° = 72°

Supplement of 72° = 180° - 72° = 108°

Therefore, supplement of the angle 4/5 of 90° = 108°



3. The measure of two complementary angles are (2x - 7)° and (x + 4)°. Find the value of x.

Solution:

According to the problem, (2x - 7)° and (x + 4)°, are complementary angles’ so we get;

(2x - 7)° + (x + 4)° = 90°

or, 2x - 7° + x + 4° = 90°

or, 2x + x - 7° + 4° = 90°

or, 3x - 3° = 90°

or, 3x - 3° + 3° = 90° + 3°

or, 3x = 93°

or, x = 93°/3°

or, x = 31°

Therefore, the value of x = 31°.



4. The measure of two supplementary angles are (3x + 15)° and (2x + 5)°. Find the value of x.

Solution:

According to the problem, (3x + 15)° and (2x + 5)°, are complementary angles’ so we get;

(3x + 15)° + (2x + 5)° = 180°

or, 3x + 15° + 2x + 5° = 180°

or, 3x + 2x + 15° + 5° = 180°

or, 5x + 20° = 180°

or, 5x + 20° - 20° = 180° - 20°

or, 5x = 160°

or, x = 160°/5°

or, x = 32°

Therefore, the value of x = 32°.


5. The difference between the two complementary angles is 180°. Find the measure of the angle.

Solution:

Let one angle be of measure x°.

Then complement of x° = (90 - x)

Difference = 18°

Therefore, (90° - x) – x = 18°

or, 90° - 2x = 18°

or, 90° - 90° - 2x = 18° - 90°

or, -2x = -72°

or, x = 72°/2°

or, x = 36°

Also, 90° - x

= 90° - 36°

= 54°.

Therefore, the two angles are 36°, 54°.



6. POQ is a straight line and OS stands on PQ. Find the value of x and the measure of ∠ POS, ∠ SOR and ∠ ROQ.

complementary and supplementary angles



Solution:

POQ is a straight line.

Therefore, ∠POS + ∠SOR + ∠ROQ = 180°

or, (5x + 4°) + (x - 2°) + (3x + 7°) = 180°

or, 5x + 4° + x - 2° + 3x + 7° = 180°

or, 5x + x + 3x + 4° - 2° + 7° = 180°

or, 9x + 9° = 180°

or, 9x + 9° - 9° = 180° - 9°

or, 9x = 171°

or, x = 171/9 

or, x = 19°

Put the value of x = 19°

Therefore, x - 2

= 19 - 2

= 17°

Again, 3x + 7

= 3 × 19° + 7°

= 570 + 7°

= 64°

And again, 5x + 4

= 5 × 19° + 4°

= 95° + 4°

= 99°

Therefore, the measure of the three angles is 17°, 64°, 99°.

These are the above solved examples on complementary and supplementary angles explained step-by-step with detailed explanation.


 Lines and Angles

Fundamental Geometrical Concepts

Angles

Classification of Angles

Related Angles

Some Geometric Terms and Results

Complementary Angles

Supplementary Angles

Complementary and Supplementary Angles

Adjacent Angles

Linear Pair of Angles

Vertically Opposite Angles

Parallel Lines

Transversal Line

Parallel and Transversal Lines









7th Grade Math Problems 

8th Grade Math Practice 

From Complementary and Supplementary Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 24, 25 01:45 AM

    Addition of Decimals
    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  2. Addition of Like Fractions | Examples | Videos | Worksheet | Fractions

    Apr 23, 25 09:23 AM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More

  3. Subtraction | How to Subtract 2-digit, 3-digit, 4-digit Numbers?|Steps

    Apr 23, 25 12:41 AM

    Subtraction Example
    The answer of a subtraction sum is called DIFFERENCE. How to subtract 2-digit numbers? Steps are shown to subtract 2-digit numbers.

    Read More

  4. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Apr 23, 25 12:38 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  5. Subtraction with Regrouping | 4-Digit, 5-Digit and 6-Digit Subtraction

    Apr 23, 25 12:34 AM

     Subtraction of 5-Digit Numbers with Regrouping
    We will learn subtraction 4-digit, 5-digit and 6-digit numbers with regrouping. Subtraction of 4-digit numbers can be done in the same way as we do subtraction of smaller numbers. We first arrange the…

    Read More