Related Angles

Related angles are the pairs of angles and specific names are given to the pairs of angles which we come across. These are called related angles as they are related with some condition.

Complementary angles:

When the sum of the measures of two angles is 90°, such angles are called complementary angles.

For example:

An angle of 30° and another angle of 60° are complementary angles of each other.

Also, complement of 30° is 90° - 30° = 60°.

And complement of 60° is 90° - 60° = 30°

complementary angles

∠AOB + ∠POQ = 90°

Supplementary angles:

When the sum of the measures of two angles is 180°, such angles are called supplementary angles.

For example:

An angle of 120° and another angle of 60° are supplementary angles of each other. Also, supplement of 120° is 180° - 120° = 60°.
And supplement of 60° is 180° - 60° = 120°

supplementary angles

∠AOB + ∠POQ = 180°

Adjacent angles:

Two angles in a plane are said to be adjacent if they have a common arm, a common vertex and the non-common arms lie on the opposite side of the common arm.

adjacent angles

In the given figure, ∠AOC and ∠BOC are adjacent angles as OC is the common arm, O is the common vertex, and OA, OB are on the opposite side of OC.

Linear pair:

Two adjacent angles form a linear pair of angles if their non-common arms are two opposite rays, i.e., the sum of two adjacent angles is 180°.

Here, ∠AOB + ∠AOC

= 180°

linear pair of angles

Vertically opposite angles:

When two lines intersect, then the angles having their arms in the opposite direction are called vertically opposite angles. The pair of vertically opposite angles is equal. 

Here the pairs of vertically opposite angles are ∠AOD and ∠BOC, ∠AOC and ∠BOD. 

vertically opposite angles

Theorems on related angles:

1. If a ray stands on a line, then the sum of adjacent angles formed is 180°.

Given: A ray RT standing on (PQ) ⃡ such that ∠PRT and ∠QRT are formed.

sum of adjacent angles

Construction: Draw RS ⊥ PQ.

Proof: Now ∠PRT = ∠PRS + ∠SRT ……………. (1)

Also ∠QRT = ∠QRS - ∠SRT ……………. (2)

Adding (1) and (2),

∠PRT + ∠QRT = ∠PRS + ∠SRT + ∠QRS - ∠SRT

= ∠PRS + ∠QRS

= 90° + 90°

= 180°

2. The sum of all the angles around a point is equal to 360°. 

Given: A point O and rays OP, OQ, OR, OS, OT which make angles around O.

angles around a point

Construction: Draw OX opposite to ray OP

Proof: Since, OQ stands on XP therefore

∠POQ + ∠QOX = 180°

∠POQ + (∠QOR + ∠ROX) = 180°

∠POQ + ∠QOR + ∠ROX = 180° ……………. (i)

Again OS stands on XP, therefore

∠XOS + ∠SOP = 180°

∠XOS + (∠SOT + ∠TOP) = 180°

∠XOS + ∠SOT + ∠TOP = 180° ……………. (ii)

Adding (i) and (ii),

∠POQ + ∠QOR + ∠ROX + ∠XOS + ∠SOT + ∠TOP

= 180° + 180°

= 360°

3. If two lines intersect, then vertically opposite angles are equal.

Given: PQ and RS intersect at point O.

vertically opposites

Proof: OR stands on PQ.

Therefore, ∠POR + ∠ROQ = 180° ……………. (i)

PO stands on RS

∠POR + ∠POS = 180° ……………. (ii)

From (i) and (ii),

∠POR + ∠ROQ = ∠POR + ∠POS


Similarly, ∠POR = ∠QOS can be proved.

 Lines and Angles

Fundamental Geometrical Concepts


Classification of Angles

Related Angles

Some Geometric Terms and Results

Complementary Angles

Supplementary Angles

Complementary and Supplementary Angles

Adjacent Angles

Linear Pair of Angles

Vertically Opposite Angles

Parallel Lines

Transversal Line

Parallel and Transversal Lines

7th Grade Math Problems 

8th Grade Math Practice 

From Related Angles to HOME PAGE

New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Share this page: What’s this?

Recent Articles

  1. Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

    Mar 02, 24 05:31 PM

    The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerato…

    Read More

  2. Subtraction of Fractions having the Same Denominator | Like Fractions

    Mar 02, 24 04:36 PM

    Subtraction of Fractions having the Same Denominator
    To find the difference between like fractions we subtract the smaller numerator from the greater numerator. In subtraction of fractions having the same denominator, we just need to subtract the numera…

    Read More

  3. Addition of Like Fractions | Examples | Worksheet | Answer | Fractions

    Mar 02, 24 03:32 PM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More

  4. Comparison of Unlike Fractions | Compare Unlike Fractions | Examples

    Mar 01, 24 01:42 PM

    Comparison of Unlike Fractions
    In comparison of unlike fractions, we change the unlike fractions to like fractions and then compare. To compare two fractions with different numerators and different denominators, we multiply by a nu…

    Read More

  5. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 29, 24 05:12 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More