Radix Complement

Radix Complement Representation:

In the decimal number system, the radix complement is the 10’s complement. In radix complement representation system, the complement of an n-digit number is obtained by subtracting the number from 10n.

Let us consider some examples of 3-digit numbers and their radix complement in decimal system.

Decimal Number

948

607

155

735

Radix Complement

52

393

845

265


br>From the above discussion we find that a subtraction operation is to be preformed to get the 10’s complement of a number, say, N. This subtraction operation can be avoided by rewriting 10n as (10n - 1) + 1 and 10n - N as {(10n - 1) - N} + 1. The number 10n - 1 is of the form 999...99 consisting of n digits. If the complement of a digit be defined as (9 - the concerned digit), then (10n - 1) - N is obtained by complementing the digits of N.

Therefore, the 10’s complement of the number N is obtained by subtracting each digit of the number from 9 and then adding 1 to the LSD of the number so formed.

For instance, the 10’s complement of 172 is (827 + 1) or 828 and that of 405 is (594 + 1) or 595.

For the binary number system the radix complement is the two’s complement. The 2’s complement of a binary number is obtained by subtracting each bit of the number from the radix diminished by 1 i.e. from (2 - 1) or 1 and adding an 1 to the LSB. The application of this rule is very simple. We have to just change 1 to 0 and 0 to 1 in every bit and then add 1 to the LSB of the number so formed. For example, the 2’s complement of the binary number 11011 is (00100 + 1) or 00101 and that of 10110 is (01001 + 1) or 01010.

If the number be in signed magnitude representation, it is positive if the MSB is 0 and negative if the MSB is 1. The decimal equivalent of a 2’s complement binary number, in the case of signed-magnitude representation, is computed in the same way as for an unsigned number except that the weight of the MSB is -2n-1 instead of +2n-1 for an n-bit binary number.

Let us observe some examples of 8-bit binary numbers and their 2’s complement are shown below:

Binary Number

Sign bit         01101101

Complement:  10010010

                            + 1

                    10010011

Decimal equivalent

+ 109





- 128 + 19 = -109



Binary Numbers

  • Why Binary Numbers are Used
  • Binary to Decimal Conversion
  • Conversion of Numbers
  • Hexa-decimal Number System
  • Conversion of Binary Numbers to Octal or Hexa-decimal Numbers
  • Octal and Hexa-Decimal Numbers
  • Signed-magnitude Representation
  • Radix Complement
  • Diminished Radix Complement
  • Arithmetic Operations of Binary Numbers


From Radix Complement Representation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Fundamental Operations on Large Numbers Worksheet | 5th Grade Numbers

    Mar 14, 25 05:31 PM

    fundamental operations on large numbers worksheet

    Read More

  2. Word Problems on Division | Examples on Word Problems on Division

    Mar 13, 25 01:01 PM

    Word Problem on Division
    Word problems on division for fourth grade students are solved here step by step. Consider the following examples on word problems involving division: 1. $5,876 are distributed equally among 26 men. H…

    Read More

  3. Division of Whole Numbers |Relation between Dividend, Divisor Quotient

    Mar 13, 25 12:41 PM

    Dividing Whole Numbers
    Relation between Dividend, Divisor, Quotient and Remainder is. Dividend = Divisor × Quotient + Remainder. To understand the relation between dividend, divisor, quotient and remainder let us follow the…

    Read More

  4. Adding 1-Digit Number | Understand the Concept one Digit Number |Video

    Mar 07, 25 03:55 PM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  5. Vertical Addition | How to Add 1-Digit Number Vertically? | Problems

    Mar 07, 25 02:35 PM

    Vertical Addition
    Now we will learn simple Vertical Addition of 1-digit number by arranging them one number under the other number. How to add 1-digit number vertically?

    Read More