Subscribe to our YouTube channel for the latest videos, updates, and tips.


Radix Complement

Radix Complement Representation:

In the decimal number system, the radix complement is the 10’s complement. In radix complement representation system, the complement of an n-digit number is obtained by subtracting the number from 10n.

Let us consider some examples of 3-digit numbers and their radix complement in decimal system.

Decimal Number

948

607

155

735

Radix Complement

52

393

845

265


br>From the above discussion we find that a subtraction operation is to be preformed to get the 10’s complement of a number, say, N. This subtraction operation can be avoided by rewriting 10n as (10n - 1) + 1 and 10n - N as {(10n - 1) - N} + 1. The number 10n - 1 is of the form 999...99 consisting of n digits. If the complement of a digit be defined as (9 - the concerned digit), then (10n - 1) - N is obtained by complementing the digits of N.

Therefore, the 10’s complement of the number N is obtained by subtracting each digit of the number from 9 and then adding 1 to the LSD of the number so formed.

For instance, the 10’s complement of 172 is (827 + 1) or 828 and that of 405 is (594 + 1) or 595.

For the binary number system the radix complement is the two’s complement. The 2’s complement of a binary number is obtained by subtracting each bit of the number from the radix diminished by 1 i.e. from (2 - 1) or 1 and adding an 1 to the LSB. The application of this rule is very simple. We have to just change 1 to 0 and 0 to 1 in every bit and then add 1 to the LSB of the number so formed. For example, the 2’s complement of the binary number 11011 is (00100 + 1) or 00101 and that of 10110 is (01001 + 1) or 01010.

If the number be in signed magnitude representation, it is positive if the MSB is 0 and negative if the MSB is 1. The decimal equivalent of a 2’s complement binary number, in the case of signed-magnitude representation, is computed in the same way as for an unsigned number except that the weight of the MSB is -2n-1 instead of +2n-1 for an n-bit binary number.

Let us observe some examples of 8-bit binary numbers and their 2’s complement are shown below:

Binary Number

Sign bit         01101101

Complement:  10010010

                            + 1

                    10010011

Decimal equivalent

+ 109





- 128 + 19 = -109



Binary Numbers

  • Why Binary Numbers are Used
  • Binary to Decimal Conversion
  • Conversion of Numbers
  • Hexa-decimal Number System
  • Conversion of Binary Numbers to Octal or Hexa-decimal Numbers
  • Octal and Hexa-Decimal Numbers
  • Signed-magnitude Representation
  • Radix Complement
  • Diminished Radix Complement
  • Arithmetic Operations of Binary Numbers


From Radix Complement Representation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  2. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  3. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More