Binary Multiplication

The procedure for binary multiplication is similar to that in decimal system.

The rules of binary multiplication are given by the following table:

× 1 0
1 1 0
0 0 0

As in decimal system, the multiplication of binary numbers is carried out by multiplying the multiplicand by one bit of the multiplier at a time and the result of the partial product for each bit is placed in such a manner that the LSB is under the corresponding multiplier bit.

Finally the partial products are added to get the complete product. The placement of the binary point in the product of two binary numbers having fractional representation is determined in the same way as in the product of decimal numbers with fractional representation. The total number of places after the binary point in the multiplicand and the multiplier is counted.


The binary point in the product is then placed before this total number of places counted from right. It should be noted that a multiplication by zero makes all the bits of the partial product zero and may thus be ignored in intermediate steps.

Also, a multiplication by 1 leaves the bits of multiplicand unchanged but shifts it towards the left by one bit position. The multiplication of binary numbers becomes more convenient by carrying out intermediate sums of partial products.

In the case of binary multiplication there are certain advantages. The multiplication is actually the addition of multiplicand with itself after some suitable shift depending upon the multiplier. Thus multiplication is actually a process of shifting and adding. This process is to be continued until the shifting due to MSB of the multiplier is done and final addition is made.


A few examples will make the process of binary multiplication clear:

Multiply:

(i) 10111 by 1101

Solution:

                                1 0 1 1 1

                                   1 1 0 1

                                 1 0 1 1 1            First partial product

                            1 0 1 1 1     

                            1 1 1 0 0 1 1            First intermediate sum

                         1 0 1 1 1          

                       1 0 0 1 0 1 0 1 1            Final sum.

Hence the required product is 100101011.


(ii) 11011.101 by 101.111

                                        1 1 0 1 1 . 1 0 1

                                             1 0 1 . 1 1 1  

                                        1 1 0 1 1 . 1 0 1

                                     1 1 0 1 1 1 . 0 1           First partial product

                                  1 0 1 0 0 1 0   1 1 1         First intermediate sum

                                  1 1 0 1 1 1 0   1        

                               1 1 0 0 0 0 0 1   0 1 1     Second intermediate sum

                               1 1 0 1 1 1 0 1              

                             1 1 0 0 1 1 1 1 0   0 1 1         Third intermediate sum

                          1 1 0 1 1 1 0 1                    

                       1 0 1 0 0 0 1 0 0 1 0   0 1 1

Hence the required result is 10100010.010011.

Binary Numbers

  • Decimal Number System
  • Why Binary Numbers are Used
  • Binary to Decimal Conversion
  • Conversion of Numbers
  • Hexa-decimal Number System
  • Conversion of Binary Numbers to Octal or Hexa-decimal Numbers
  • Octal and Hexa-Decimal Numbers
  • Signed-magnitude Representation
  • Radix Complement
  • Diminished Radix Complement
  • Arithmetic Operations of Binary Numbers


From Binary Multiplication to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More