Subscribe to our YouTube channel for the latest videos, updates, and tips.


Binary Addition using 2’s Complement

When negative numbers are expressed in binary addition using 2’s complement the addition of binary numbers becomes easier. This operation is almost similar to that in 1’s complement system and is explained with examples given below:


A. Addition of a positive number and a negative number.

We consider the following cases.

Case I: When the positive number has a greater magnitude

In this case the carry which will be generated is discarded and the final result is the result of addition.


The following examples will illustrate this method in binary addition using 2’s complement:

In a 5-bit register find the sum of the following by using 2’s complement:

(i) -1011 and -0101

Solution:

                    + 1 0 1 1           ⇒          0 1 0 1 1

                    - 0 1 0 1           ⇒          1 1 0 1 1     (2’s complement)

               (Carry 1 discarded)               0 0 1 1 0

Hence the sum is + 0110.


(ii) + 0111 and – 0011.

Solution:

                    + 0 1 1 1           ⇒          0 0 1 1 1

                    - 0 0 1 1           ⇒          1 1 1 0 1     

               (Carry 1 discarded)               0 0 1 0 0

Hence the sum is + 0100.


Case II: When the negative number is greater.

When the negative numbers is greater no carry will be generated in the sign bit. The result of addition will be negative and the final result is obtained by taking 2’s complement of the magnitude bits of the result.

The following examples will illustrate this method in binary addition using 2’s complement:

In a 5-bit register find the sum of the following by using 2’s complement:

(i) + 0 0 1 1 and - 0 1 0 1

Solution:

                    + 0 0 1 1           ⇒          0 0 0 1 1

                    - 0 1 0 1           ⇒          1 1 0 1 1     (2’s complement)

                                                       1 1 1 1 0

2’s complement of 1110 is (0001 + 0001) or 0010.

Hence the required sum is - 0010.


(ii) + 0 1 0 0 and - 0 1 1 1

Solution:

                    + 0 1 0 0           ⇒          0 0 1 0 0

                    - 0 1 1 1           ⇒          1 1 0 0 1     (2’s complement)

                                                       1 1 1 0 1

2’s complement of 1101 is 0011.

Hence the required sum is – 0011.


B. When the numbers are negative.

When two negative numbers are added a carry will be generated from the sign bit which will be discarded. 2’s complement of the magnitude bits of the operation will be the final sum.


The following examples will illustrate this method in binary addition using 2’s complement:

In a 5-bit register find the sum of the following by using 2’s complement:

(i) – 0011 and – 0101

Solution:

                    - 0 0 1 1           ⇒          1 1 1 0 1          (2’s complement)

                    - 0 1 0 1           ⇒          1 1 0 1 1          (2’s complement)

               (Carry 1 discarded)               1 1 0 0 0

2’s complement of 1000 is (0111 + 0001) or 1000.

Hence the required sum is – 1000.


(ii) -0111 and – 0010.

Solution:

                    - 0 1 1 1           ⇒          1 1 0 0 1          (2’s complement)

                    - 0 0 1 0           ⇒          1 1 1 1 0          (2’s complement)

               (Carry 1 discarded)               1 0 1 1 1

2’s complement of 0111 is 1001.

Hence the required sum is – 1001.

Binary Numbers

  • Decimal Number System
  • Why Binary Numbers are Used
  • Binary to Decimal Conversion
  • Conversion of Numbers
  • Hexa-decimal Number System
  • Conversion of Binary Numbers to Octal or Hexa-decimal Numbers
  • Octal and Hexa-Decimal Numbers
  • Signed-magnitude Representation
  • Radix Complement
  • Diminished Radix Complement
  • Arithmetic Operations of Binary Numbers


From Binary Addition using 2’s Complement to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  2. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  3. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More