Subscribe to our YouTube channel for the latest videos, updates, and tips.


Binary Addition using 2’s Complement

When negative numbers are expressed in binary addition using 2’s complement the addition of binary numbers becomes easier. This operation is almost similar to that in 1’s complement system and is explained with examples given below:


A. Addition of a positive number and a negative number.

We consider the following cases.

Case I: When the positive number has a greater magnitude

In this case the carry which will be generated is discarded and the final result is the result of addition.


The following examples will illustrate this method in binary addition using 2’s complement:

In a 5-bit register find the sum of the following by using 2’s complement:

(i) -1011 and -0101

Solution:

                    + 1 0 1 1           ⇒          0 1 0 1 1

                    - 0 1 0 1           ⇒          1 1 0 1 1     (2’s complement)

               (Carry 1 discarded)               0 0 1 1 0

Hence the sum is + 0110.


(ii) + 0111 and – 0011.

Solution:

                    + 0 1 1 1           ⇒          0 0 1 1 1

                    - 0 0 1 1           ⇒          1 1 1 0 1     

               (Carry 1 discarded)               0 0 1 0 0

Hence the sum is + 0100.


Case II: When the negative number is greater.

When the negative numbers is greater no carry will be generated in the sign bit. The result of addition will be negative and the final result is obtained by taking 2’s complement of the magnitude bits of the result.

The following examples will illustrate this method in binary addition using 2’s complement:

In a 5-bit register find the sum of the following by using 2’s complement:

(i) + 0 0 1 1 and - 0 1 0 1

Solution:

                    + 0 0 1 1           ⇒          0 0 0 1 1

                    - 0 1 0 1           ⇒          1 1 0 1 1     (2’s complement)

                                                       1 1 1 1 0

2’s complement of 1110 is (0001 + 0001) or 0010.

Hence the required sum is - 0010.


(ii) + 0 1 0 0 and - 0 1 1 1

Solution:

                    + 0 1 0 0           ⇒          0 0 1 0 0

                    - 0 1 1 1           ⇒          1 1 0 0 1     (2’s complement)

                                                       1 1 1 0 1

2’s complement of 1101 is 0011.

Hence the required sum is – 0011.


B. When the numbers are negative.

When two negative numbers are added a carry will be generated from the sign bit which will be discarded. 2’s complement of the magnitude bits of the operation will be the final sum.


The following examples will illustrate this method in binary addition using 2’s complement:

In a 5-bit register find the sum of the following by using 2’s complement:

(i) – 0011 and – 0101

Solution:

                    - 0 0 1 1           ⇒          1 1 1 0 1          (2’s complement)

                    - 0 1 0 1           ⇒          1 1 0 1 1          (2’s complement)

               (Carry 1 discarded)               1 1 0 0 0

2’s complement of 1000 is (0111 + 0001) or 1000.

Hence the required sum is – 1000.


(ii) -0111 and – 0010.

Solution:

                    - 0 1 1 1           ⇒          1 1 0 0 1          (2’s complement)

                    - 0 0 1 0           ⇒          1 1 1 1 0          (2’s complement)

               (Carry 1 discarded)               1 0 1 1 1

2’s complement of 0111 is 1001.

Hence the required sum is – 1001.

Binary Numbers

  • Decimal Number System
  • Why Binary Numbers are Used
  • Binary to Decimal Conversion
  • Conversion of Numbers
  • Hexa-decimal Number System
  • Conversion of Binary Numbers to Octal or Hexa-decimal Numbers
  • Octal and Hexa-Decimal Numbers
  • Signed-magnitude Representation
  • Radix Complement
  • Diminished Radix Complement
  • Arithmetic Operations of Binary Numbers


From Binary Addition using 2’s Complement to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 10, 25 11:41 AM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More