Binary Addition using 1’s Complement

In binary addition using 1’s complement;

A. Addition of a positive and a negative binary number

We discuss the following cases under this.

Case I: When the positive number has greater magnitude.

In this case addition of numbers is performed after taking 1’s complement of the negative number and the end-around carry of the sum is added to the least significant bit.


The following examples will illustrate this method in binary addition using 1’s complement:

1. Find the sum of the following binary numbers:

(i) + 1110 and - 1101

Solution:

            + 1 1 1 0      ⇒      0 1 1 1 0

            - 1 1 0 1      ⇒      1 0 0 1 0      (taking 1’s complement)

                                      0 0 0 0 0

                                                 1      carry

                                      0 0 0 0 1

Hence the required sum is + 0001.


(ii) + 1101 and - 1011

(Assume that the representation is in a signed 5-bit register).

Solution:

           + 1 1 0 1      ⇒      0 1 1 0 1

            - 1 0 1 1      ⇒      1 0 1 0 0      (taking 1’s complement)

                                      0 0 0 0 1

                                                 1      carry

                                       0 0 0 1 0

Hence the required sum is + 0010.


Case II: When the negative number has greater magnitude.

In this case the addition is carried in the same way as in case 1 but there will be non end-around carry. The sum is obtained by taking 1’s complement of the magnitude bits of the result and it will be negative.


The following examples will illustrate this method in binary addition using 1’s complement:

Find the sum of the following binary numbers represented in a sign-plus-magnitude 5-bit register:

(i) + 1010 and - 1100

Solution:

           + 1 0 1 0      ⇒      0 1 0 1 0

            - 1 1 0 0      ⇒      1 0 0 1 1      (1’s complement)

                                      1 1 1 0 1

Hence the required sum is – 0010.

(ii) + 0011 and - 1101.

Solution:

           + 0 0 1 1      ⇒      0 0 0 1 1

            - 1 1 0 1      ⇒      1 0 0 1 0      (1’s complement)

                                      1 0 1 0 1

Hence the required sum is – 1010.


B. When the two numbers are negative

For the addition of two negative numbers 1’s complements of both the numbers are to be taken and then added. In this case an end-around carry will always appear. This along with a carry from the MSB (i.e. the 4th bit in the case of sign-plus-magnitude 5-bit register) will generate a 1 in the sign bit. 1’s complement of the magnitude bits of the result of addition will give the final sum.

The following examples will illustrate this method in binary addition using 1’s complement:

Find the sum of the following negative numbers represented in a sign-plus-magnitude 5-bit register:

(i) -1010 and -0101

Solution:

            - 1 0 1 0      ⇒      1 0 1 0 1      (1’s complement)

            - 0 1 0 1      ⇒      1 1 0 1 0      (1’s complement)

                                      0 1 1 1 1

                                                 1      carry

                                      1 0 0 0 0

1’s complement of the magnitude bits of sum is 1111 and the sign bit is 1.

Hence the required sum is -1111.


(ii) -0110 and -0111.

Solution:

            - 0 1 1 0      ⇒      1 1 0 0 1      (1’s complement)

            - 0 1 1 1      ⇒      1 1 0 0 0      (1’s complement)

                                      1 0 0 0 1

                                                 1      carry

                                      1 0 0 1 0

1’s complement of 0010 is 1101 and the sign bit is 1.

Hence the required sum is - 1101.

Binary Numbers

  • Decimal Number System
  • Why Binary Numbers are Used
  • Binary to Decimal Conversion
  • Conversion of Numbers
  • Hexa-decimal Number System
  • Conversion of Binary Numbers to Octal or Hexa-decimal Numbers
  • Octal and Hexa-Decimal Numbers
  • Signed-magnitude Representation
  • Radix Complement
  • Diminished Radix Complement
  • Arithmetic Operations of Binary Numbers


From Binary Addition using 1's Complement to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  2. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  3. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More

  4. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Apr 26, 25 03:48 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More

  5. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Apr 26, 25 01:00 PM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More