The following steps will help us to solve quadratic equations by factoring:

Step I: Clear all the fractions and brackets, if necessary.

Step II: Transpose all the terms to the left hand side to get an equation in the form ax$$^{2}$$ + bx + c = 0.

Step III: Factorize the expression on the left hand side.

Step IV: Put each factor equal to zero and solve.

1. Solve the quadratic equation 6m$$^{2}$$ – 7m + 2 = 0 by factorization method.

Solution:

⟹ 6m$$^{2}$$ – 4m – 3m + 2 = 0

⟹ 2m(3m – 2) – 1(3m – 2) = 0

⟹ (3m – 2) (2m – 1) = 0

⟹ 3m – 2 = 0 or 2m – 1 = 0

⟹ 3m = 2 or 2m = 1

⟹ m = $$\frac{2}{3}$$ or m = $$\frac{1}{2}$$

Therefore, m = $$\frac{2}{3}$$, $$\frac{1}{2}$$

2. Solve for x:

x$$^{2}$$ + (4 – 3y)x – 12y = 0

Solution:

Here, x$$^{2}$$ + 4x – 3xy – 12y = 0

⟹ x(x + 4) - 3y(x + 4) = 0

or, (x + 4) (x – 3y) = 0

⟹ x + 4 = 0 or x – 3y = 0

⟹ x = -4 or x = 3y

Therefore, x = -4 or x = 3y

3. Find the integral values of x (i.e., x ∈ Z) which satisfy 3x$$^{2}$$ - 2x - 8 = 0.

Solution:

Here the equation is 3x$$^{2}$$ – 2x – 8 = 0

⟹ 3x$$^{2}$$ – 6x + 4x – 8 = 0

⟹ 3x(x – 2) + 4(x – 2) = 0

⟹ (x – 2) (3x + 4) = 0

⟹ x – 2 = 0 or 3x + 4 = 0

⟹ x = 2 or x = -$$\frac{4}{3}$$

Therefore, x = 2, -$$\frac{4}{3}$$

But x is an integer (according to the question).

So, x ≠ -$$\frac{4}{3}$$

Therefore, x = 2 is the only integral value of x.

4. Solve: 2(x$$^{2}$$ + 1) = 5x

Solution:

Here the equation is 2x^2 + 2 = 5x

⟹ 2x$$^{2}$$ - 5x + 2 = 0

⟹ 2x$$^{2}$$ - 4x - x + 2 = 0

⟹ 2x(x - 2) - 1(x - 2) = 0

⟹ (x – 2)(2x - 1) = 0

⟹ x - 2 = 0 or 2x - 1 = 0 (by zero product rule)

⟹ x = 2 or x = $$\frac{1}{2}$$

Therefore, the solutions are x = 2, 1/2.

5. Find the solution set of the equation 3x$$^{2}$$ – 8x – 3 = 0; when

(i) x ∈ Z (integers)

(ii) x ∈ Q (rational numbers)

Solution:

Here the equation is 3x$$^{2}$$ – 8x – 3 = 0

⟹ 3x$$^{2}$$ – 9x + x – 3 = 0

⟹ 3x(x – 3) + 1(x – 3) = 0

⟹ (x – 3) (3x + 1) = 0

⟹ x = 3 or x = -$$\frac{1}{3}$$

(i) When x ∈ Z, the solution set = {3}

(ii) When x ∈ Q, the solution set = {3, -$$\frac{1}{3}$$}

6. Solve: (2x - 3)$$^{2}$$ = 25

Solution:

Here the equation is (2x – 3)$$^{2}$$ = 25

⟹ 4x$$^{2}$$ – 12x + 9 – 25 = 0

⟹ 4x$$^{2}$$ – 12x - 16 = 0

⟹ x$$^{2}$$ – 3x - 4 = 0 (dividing each term by 4)

⟹ (x – 4) (x + 1) = 0

⟹ x = 4 or x = -1

Formation of Quadratic Equation in One Variable

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles 1. ### Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

Dec 04, 23 02:14 PM

Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

2. ### Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

Dec 04, 23 01:50 PM

There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…