Quadratic Equations by Factoring

The following steps will help us to solve quadratic equations by factoring:

Step I: Clear all the fractions and brackets, if necessary.

Step II: Transpose all the terms to the left hand side to get an equation in the form ax\(^{2}\) + bx + c = 0.

Step III: Factorize the expression on the left hand side.

Step IV: Put each factor equal to zero and solve.


1. Solve the quadratic equation 6m\(^{2}\) – 7m + 2 = 0 by factorization method.

Solution:                             

⟹ 6m\(^{2}\) – 4m – 3m + 2 = 0    

⟹ 2m(3m – 2) – 1(3m – 2) = 0

⟹ (3m – 2) (2m – 1) = 0          

⟹ 3m – 2 = 0 or 2m – 1 = 0

⟹ 3m = 2 or 2m = 1

⟹ m = \(\frac{2}{3}\) or m = \(\frac{1}{2}\)

Therefore, m = \(\frac{2}{3}\), \(\frac{1}{2}\)


2. Solve for x:

x\(^{2}\) + (4 – 3y)x – 12y = 0

Solution:

Here, x\(^{2}\) + 4x – 3xy – 12y = 0                               

⟹ x(x + 4) - 3y(x + 4) = 0

or, (x + 4) (x – 3y) = 0                                

⟹ x + 4 = 0 or x – 3y = 0

⟹ x = -4 or x = 3y

Therefore, x = -4 or x = 3y        

 

3. Find the integral values of x (i.e., x ∈ Z) which satisfy 3x\(^{2}\) - 2x - 8 = 0.

Solution:

Here the equation is 3x\(^{2}\) – 2x – 8 = 0

⟹ 3x\(^{2}\) – 6x + 4x – 8 = 0          

⟹ 3x(x – 2) + 4(x – 2) = 0

⟹ (x – 2) (3x + 4) = 0                

⟹ x – 2 = 0 or 3x + 4 = 0

⟹ x = 2 or x = -\(\frac{4}{3}\)

Therefore, x = 2, -\(\frac{4}{3}\)

But x is an integer (according to the question).

So, x ≠ -\(\frac{4}{3}\)

Therefore, x = 2 is the only integral value of x.

 

4. Solve: 2(x\(^{2}\) + 1) = 5x

Solution:

Here the equation is 2x^2 + 2 = 5x

⟹ 2x\(^{2}\) - 5x + 2 = 0

⟹ 2x\(^{2}\) - 4x - x + 2 = 0             

⟹ 2x(x - 2) - 1(x - 2) = 0

⟹ (x – 2)(2x - 1) = 0                  

⟹ x - 2 = 0 or 2x - 1 = 0 (by zero product rule)

⟹ x = 2 or x = \(\frac{1}{2}\)

Therefore, the solutions are x = 2, 1/2.

 

5. Find the solution set of the equation 3x\(^{2}\) – 8x – 3 = 0; when

(i) x ∈ Z (integers)

(ii) x ∈ Q (rational numbers)

Solution:

Here the equation is 3x\(^{2}\) – 8x – 3 = 0

⟹ 3x\(^{2}\) – 9x + x – 3 = 0

⟹ 3x(x – 3) + 1(x – 3) = 0

⟹ (x – 3) (3x + 1) = 0

⟹ x = 3 or x = -\(\frac{1}{3}\)

(i) When x ∈ Z, the solution set = {3}

(ii) When x ∈ Q, the solution set = {3, -\(\frac{1}{3}\)}

 

6. Solve: (2x - 3)\(^{2}\) = 25

Solution:

Here the equation is (2x – 3)\(^{2}\) = 25

⟹ 4x\(^{2}\) – 12x + 9 – 25 = 0

⟹ 4x\(^{2}\) – 12x - 16 = 0

⟹ x\(^{2}\) – 3x - 4 = 0 (dividing each term by 4)

⟹ (x – 4) (x + 1) = 0

⟹ x = 4 or x = -1

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring








9th Grade Math

From Quadratic Equations by Factoring to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. What is a Triangle? | Types of Triangle | Scalene Triangle | Isosceles

    Jun 17, 24 11:22 PM

    What is a triangle
    A simple closed curve or a polygon formed by three line-segments (sides) is called a triangle. The above shown shapes are triangles. The symbol of a triangle is ∆. A triangle is a polygon with three s…

    Read More

  2. Interior and Exterior of an Angle | Interior Angle | Exterior Angle

    Jun 16, 24 05:20 PM

    Interior of an Angle
    Interior and exterior of an angle is explained here. The shaded portion between the arms BA and BC of the angle ABC can be extended indefinitely.

    Read More

  3. Angles | Magnitude of an Angle | Measure of an angle | Working Rules

    Jun 16, 24 04:12 PM

    Naming an Angle
    Angles are very important in our daily life so it’s very necessary to understand about angle. Two rays meeting at a common endpoint form an angle. In the adjoining figure, two rays AB and BC are calle

    Read More

  4. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Jun 16, 24 02:34 PM

    Square - Polygon
    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  5. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Jun 16, 24 12:31 PM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More