Subscribe to our YouTube channel for the latest videos, updates, and tips.


Quadratic Equations by Factoring

The following steps will help us to solve quadratic equations by factoring:

Step I: Clear all the fractions and brackets, if necessary.

Step II: Transpose all the terms to the left hand side to get an equation in the form ax\(^{2}\) + bx + c = 0.

Step III: Factorize the expression on the left hand side.

Step IV: Put each factor equal to zero and solve.


1. Solve the quadratic equation 6m\(^{2}\) – 7m + 2 = 0 by factorization method.

Solution:                             

⟹ 6m\(^{2}\) – 4m – 3m + 2 = 0    

⟹ 2m(3m – 2) – 1(3m – 2) = 0

⟹ (3m – 2) (2m – 1) = 0          

⟹ 3m – 2 = 0 or 2m – 1 = 0

⟹ 3m = 2 or 2m = 1

⟹ m = \(\frac{2}{3}\) or m = \(\frac{1}{2}\)

Therefore, m = \(\frac{2}{3}\), \(\frac{1}{2}\)


2. Solve for x:

x\(^{2}\) + (4 – 3y)x – 12y = 0

Solution:

Here, x\(^{2}\) + 4x – 3xy – 12y = 0                               

⟹ x(x + 4) - 3y(x + 4) = 0

or, (x + 4) (x – 3y) = 0                                

⟹ x + 4 = 0 or x – 3y = 0

⟹ x = -4 or x = 3y

Therefore, x = -4 or x = 3y        

 

3. Find the integral values of x (i.e., x ∈ Z) which satisfy 3x\(^{2}\) - 2x - 8 = 0.

Solution:

Here the equation is 3x\(^{2}\) – 2x – 8 = 0

⟹ 3x\(^{2}\) – 6x + 4x – 8 = 0          

⟹ 3x(x – 2) + 4(x – 2) = 0

⟹ (x – 2) (3x + 4) = 0                

⟹ x – 2 = 0 or 3x + 4 = 0

⟹ x = 2 or x = -\(\frac{4}{3}\)

Therefore, x = 2, -\(\frac{4}{3}\)

But x is an integer (according to the question).

So, x ≠ -\(\frac{4}{3}\)

Therefore, x = 2 is the only integral value of x.

 

4. Solve: 2(x\(^{2}\) + 1) = 5x

Solution:

Here the equation is 2x^2 + 2 = 5x

⟹ 2x\(^{2}\) - 5x + 2 = 0

⟹ 2x\(^{2}\) - 4x - x + 2 = 0             

⟹ 2x(x - 2) - 1(x - 2) = 0

⟹ (x – 2)(2x - 1) = 0                  

⟹ x - 2 = 0 or 2x - 1 = 0 (by zero product rule)

⟹ x = 2 or x = \(\frac{1}{2}\)

Therefore, the solutions are x = 2, 1/2.

 

5. Find the solution set of the equation 3x\(^{2}\) – 8x – 3 = 0; when

(i) x ∈ Z (integers)

(ii) x ∈ Q (rational numbers)

Solution:

Here the equation is 3x\(^{2}\) – 8x – 3 = 0

⟹ 3x\(^{2}\) – 9x + x – 3 = 0

⟹ 3x(x – 3) + 1(x – 3) = 0

⟹ (x – 3) (3x + 1) = 0

⟹ x = 3 or x = -\(\frac{1}{3}\)

(i) When x ∈ Z, the solution set = {3}

(ii) When x ∈ Q, the solution set = {3, -\(\frac{1}{3}\)}

 

6. Solve: (2x - 3)\(^{2}\) = 25

Solution:

Here the equation is (2x – 3)\(^{2}\) = 25

⟹ 4x\(^{2}\) – 12x + 9 – 25 = 0

⟹ 4x\(^{2}\) – 12x - 16 = 0

⟹ x\(^{2}\) – 3x - 4 = 0 (dividing each term by 4)

⟹ (x – 4) (x + 1) = 0

⟹ x = 4 or x = -1

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring








9th Grade Math

From Quadratic Equations by Factoring to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Conversion of Improper Fractions into Mixed Fractions |Solved Examples

    May 12, 25 04:52 AM

    Conversion of Improper Fractions into Mixed Fractions
    In conversion of improper fractions into mixed fractions, we follow the following steps: Step I: Obtain the improper fraction. Step II: Divide the numerator by the denominator and obtain the quotient…

    Read More

  2. Multiplication Table of 6 | Read and Write the Table of 6 | Six Table

    May 12, 25 02:23 AM

    Multiplication Table of Six
    Repeated addition by 6’s means the multiplication table of 6. (i) When 6 bunches each having six bananas each. By repeated addition we can show 6 + 6 + 6 + 6 + 6 + 6 = 36 Then, six 6 times or 6 sixes

    Read More

  3. Word Problems on Decimals | Decimal Word Problems | Decimal Home Work

    May 11, 25 01:22 PM

    Word problems on decimals are solved here step by step. The product of two numbers is 42.63. If one number is 2.1, find the other. Solution: Product of two numbers = 42.63 One number = 2.1

    Read More

  4. Worksheet on Dividing Decimals | Huge Number of Decimal Division Prob

    May 11, 25 11:52 AM

    Worksheet on Dividing Decimals
    Practice the math questions given in the worksheet on dividing decimals. Divide the decimals to find the quotient, same like dividing whole numbers. This worksheet would be really good for the student…

    Read More

  5. Worksheet on Multiplying Decimals | Product of the Two Decimal Numbers

    May 11, 25 11:18 AM

    Practice the math questions given in the worksheet on multiplying decimals. Multiply the decimals to find the product of the two decimal numbers, same like multiplying whole numbers.

    Read More