Problems on Quadratic Equations

We will discuss here about some of the problems on quadratic equations.

1. Solve: x^2 = 36

x^2 = 36

or, x^2 - 36=0

or, (x + 6)(x - 6) = 0

So, one of x + 6 and x - 6 must be zero

From x + 6 = 0, we get x = -6

From x - 6 = 0, we get x = 6

Thus, the required solutions are x = ± 6

Keeping the expression involving the unknown quantity and the constant term on left and right side respectively and finding square root from both sides, we can solve the equation also.

As in the equation x^2 = 36, finding square root from both sides, we get x = ± 6.


2.  Solve 2x^2 - 5x + 3 = 0

2x^2 - 5x + 3 = 0

or 2x^2 - 3x – 2x + 3=0

or, x (2x - 3) - 1 (2x - 3)=0

or, (x - 1)(2x - 3) = 0

Therefore, one of (x - 1) and (2x - 3) must be zero.

when, x - 1 = 0, x = 1

and when 2x - 3 = 0, x = 3/2

Thus required solutions are x = 1, 3/2

 

3. Solve: 3x^2 - x = 10

3x^2 - x = 10

or, 3x^2 - x - 10 = 0

or, 3x^2 - 6x + 5x - 10 = 0

or, 3x (x - 2) + 5 (x - 2) =0

or, (x - 2)(3x + 5) = 0

Therefore, one of x - 2 and 3x + 5 must be zero

When x - 2 = 0, x = 2

and when 3x + 5 = 0; 3x = -5 or; x = -5/3

Therefore, required solutions are x= -5/3, 2

 

4. Solve: (x - 7)(x - 9) = 195

(x - 7)(x - 9) = 195

or, x^2 - 9x – 7x + 63 – 195 = O

or, x2 - 16x - 132=0

or, x^2 - 22 x + 6x - 132=0

or, x(x - 22) + 6(x - 22) = 0

or, (x - 22)(x + 6) = 0

Therefore, one of x - 22 and x + 6 must be zero.

When x - 22, x = 22

when x + 6 = 0, x = - 6

Required solutions are x= -6, 22



5. Solve: x/3 +3/x =  4 1/4

or, x2 + 9/3x = 17/4

or, 4x2 + 36 = 51x

or, 4x^2 - 51x + 36 = 0

or, 4x^2 - 48x - 3x + 36 = 0

or, 4x(x- 12) -3(x - 12) = 0

or, (x - 12)(4x -3) = 0

Therefore, one of (x - 12) and (4x - 3) must be zero.

When x - 12 = 0, x = 12 when 4x -3 = 0,x = 3/4


6. Solve: x - 3/x + 3 - x + 3/x - 3 + 6 6/7 = 0

Assuming x - 3/x + 3 = a, the given equation can be written as:

a - 1/a + 6 6/7 = 0

or, a2 - 1/a + 48/7 = 0

or, a2 - 1/a = - 48/7

or, 7a^2 - 7 = - 48a

or, 7a^2 + 48a - 7 = 0

or,7a^2 + 49a - a - 7 = 0

or, 7a(a + 7) - 1 (a + 7) = 0

or,(a + 7)(7a - 1) = 0

Therefore, 0ne of (a + 7) and (7a - 1) must be zero.

a + 7 = 0 gives a = -7 and 7a - 1 = 0 gives a = 1/7

From a = -7 we get x -3/x + 3 = -7

or, x – 3 = -7x - 2 1

or, 8x = -18

Therefore, x = -18/8 = - 9/4

Again, from a = 1/7, we get x - 3/x + 3 = 1/ 7

or, 7x - 21 = x + 3

or,6x = 24

Therefore, x = 4

Required solutions are x = -9/4, 4

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring








9th Grade Math

From Problems on Quadratic Equations to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Comparing and Ordering Decimals |Arranging Decimals

    Apr 19, 25 12:16 PM

    Arranging Decimals
    Practice different types of math questions given in the worksheet on comparing and ordering decimals. This worksheet contains questions mainly related to compare decimals and then place the decimals i…

    Read More

  2. Comparison of Decimal Fractions | Comparing Decimals Numbers | Decimal

    Apr 19, 25 11:47 AM

    Comparison of Decimal Fractions
    While comparing natural numbers we first compare total number of digits in both the numbers and if they are equal then we compare the digit at the extreme left. If they also equal then we compare the…

    Read More

  3. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Apr 19, 25 11:25 AM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  4. Missing Numbers up to 10 | Worksheets on Missing Numbers up to 10

    Apr 18, 25 04:53 PM

    missing numbers up to 10
    Printable worksheets on missing numbers up to 10 help the kids to practice counting of the numbers.

    Read More

  5. Ordering Decimals | Comparing Decimals | Ascending & Descending Order

    Apr 18, 25 01:49 PM

    Ordering Decimal Numbers
    In ordering decimals we will learn how to compare two or more decimals. (i) Convert each of them as like decimals. (ii) Compare these decimals just as we compare two whole numbers ignoring

    Read More