Roots of a Quadratic Equation

We will learn how to find the Roots of a quadratic equation.

Every quadratic equation gives two values of the unknown variable and these values are called roots of the equation.

Let ax\(^{2}\) + bx + c = 0 be a quadratic equation. If aα\(^{2}\) + bα + c = 0 then α is called a root of the quadratic equation ax\(^{2}\) + bx + c = 0.

Thus,

α is a root of ax\(^{2}\) + bx + c = 0 if and only if aα\(^{2}\) + bα + c = 0

If aα\(^{2}\) + bα + c = 0 then we say x = α satisfies the equation ax\(^{2}\) + bx + c = 0 and x = α is a solution.

Thus, every solution is root.

A quadratic equation has two roots which may be unequal real numbers or equal real numbers, or numbers which are not real.

If a quadratic equation has two real equal roots α, we say the equation has only one real solution.


Example: Let 3x\(^{2}\) + x - 2 = 0 be a quadratic equation. Clearly,

3 ∙ (-1)\(^{2}\) + (-1) - 2 = 0

So, x = -1 is a root of the quadratic equation 3x\(^{2}\) + x - 2 = 0.

Similarly, x = 2/3 is another root of the equation.

But x = 2 is not a root of 3x\(^{2}\) + x - 2 = 0 because 3 ∙ 2\(^{2}\) + 2 - 2 ≠ 0.


Solved examples to find the roots of a quadratic equation:

1. Without solving the quadratic equation 3x\(^{2}\) - 2x - 1 = 0, find whether x = 1 is a solution (root) of this equation or not.

Solution:

Substituting x = 1 in the given equation 3x\(^{2}\) - 2x - 1 = 0, we get

3(1)\(^{2}\) - 2 (1) - 1 = 0

⟹ 3 - 2 - 1 = 0

⟹ 3 - 3 = 0; which is true.

Therefore, x = 1 is a solution of the given equation 3x\(^{2}\) - 2x - 1 = 0


2. Without solving the quadratic equation x\(^{2}\) - x + 1 = 0, find whether x = -1 is a root of this equation or not.

Solution:

Substituting x = -1 in the given equation x\(^{2}\) - x + 1 = 0, we get

(-1)\(^{2}\) - (-1) + 1 = 0

⟹ 1 + 1 + 1 = 0

⟹ 3 = 0; which is not true.

Therefore, x = -1 is not a solution of the given equation x\(^{2}\) - x + 1 = 0.

 

3. If one root of the quadratic equation 2x\(^{2}\) + ax - 6 = 0 is 2, find the value of a. Also, find the other root.

Solution:

Since, x = 2 is a root of the gives equation 2x\(^{2}\) + ax - 6 = 0

⟹ 2(2)\(^{2}\) + a × 2 - 6 = 0

⟹ 8 + 2a - 6 = 0

⟹ 2a + 2 = 0

⟹ 2a = -2

⟹ a = \(\frac{-2}{2}\)

⟹ a = -1

Therefore, the value of a = -1

Substituting a = -1, we get:

2x\(^{2}\) + (-1)x - 6 = 0

⟹ 2x\(^{2}\) - x - 6 = 0

⟹ 2x\(^{2}\) - 4x + 3x - 6 = 0

⟹ 2x(x - 2) + 3(x - 2) = 0

⟹ (x - 2)(2x + 3) = 0

⟹ x - 2 = 0 or 2x + 3 = 0

i.e., x = 2 or x = -\(\frac{3}{2}\)

Therefore, the other root is -\(\frac{3}{2}\).


4. Find the value of k for which x = 2 is a root (solution) of equation kx\(^{2}\) + 2x - 3 = 0.

Solution:

Substituting x = 2 in the given equation kx\(^{2}\) + 2x - 3 = 0; we get:

K(2)\(^{2}\) + 2 × 2 - 3 = 0

⟹ 4k + 4 - 3 = 0

⟹ 4k + 1 =

⟹ 4k = -1

⟹ k = -\(\frac{1}{4}\)

Therefore, the value of k = -\(\frac{1}{4}\)

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring









9th Grade Math

From Roots of a Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Addition of Three 1-Digit Numbers | Add 3 Single Digit Numbers | Steps

    Sep 19, 24 12:56 AM

    Addition of Three 1-Digit Numbers
    To add three numbers, we add any two numbers first. Then, we add the third number to the sum of the first two numbers. For example, let us add the numbers 3, 4 and 5. We can write the numbers horizont…

    Read More

  2. Adding 1-Digit Number | Understand the Concept one Digit Number

    Sep 18, 24 03:29 PM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  3. Addition of Numbers using Number Line | Addition Rules on Number Line

    Sep 18, 24 02:47 PM

    Addition Using the Number Line
    Addition of numbers using number line will help us to learn how a number line can be used for addition. Addition of numbers can be well understood with the help of the number line.

    Read More

  4. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 17, 24 01:47 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  5. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 17, 24 12:10 AM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More