Roots of a Quadratic Equation

We will learn how to find the Roots of a quadratic equation.

Every quadratic equation gives two values of the unknown variable and these values are called roots of the equation.

Let ax\(^{2}\) + bx + c = 0 be a quadratic equation. If aα\(^{2}\) + bα + c = 0 then α is called a root of the quadratic equation ax\(^{2}\) + bx + c = 0.

Thus,

α is a root of ax\(^{2}\) + bx + c = 0 if and only if aα\(^{2}\) + bα + c = 0

If aα\(^{2}\) + bα + c = 0 then we say x = α satisfies the equation ax\(^{2}\) + bx + c = 0 and x = α is a solution.

Thus, every solution is root.

A quadratic equation has two roots which may be unequal real numbers or equal real numbers, or numbers which are not real.

If a quadratic equation has two real equal roots α, we say the equation has only one real solution.


Example: Let 3x\(^{2}\) + x - 2 = 0 be a quadratic equation. Clearly,

3 ∙ (-1)\(^{2}\) + (-1) - 2 = 0

So, x = -1 is a root of the quadratic equation 3x\(^{2}\) + x - 2 = 0.

Similarly, x = 2/3 is another root of the equation.

But x = 2 is not a root of 3x\(^{2}\) + x - 2 = 0 because 3 ∙ 2\(^{2}\) + 2 - 2 ≠ 0.


Solved examples to find the roots of a quadratic equation:

1. Without solving the quadratic equation 3x\(^{2}\) - 2x - 1 = 0, find whether x = 1 is a solution (root) of this equation or not.

Solution:

Substituting x = 1 in the given equation 3x\(^{2}\) - 2x - 1 = 0, we get

3(1)\(^{2}\) - 2 (1) - 1 = 0

⟹ 3 - 2 - 1 = 0

⟹ 3 - 3 = 0; which is true.

Therefore, x = 1 is a solution of the given equation 3x\(^{2}\) - 2x - 1 = 0


2. Without solving the quadratic equation x\(^{2}\) - x + 1 = 0, find whether x = -1 is a root of this equation or not.

Solution:

Substituting x = -1 in the given equation x\(^{2}\) - x + 1 = 0, we get

(-1)\(^{2}\) - (-1) + 1 = 0

⟹ 1 + 1 + 1 = 0

⟹ 3 = 0; which is not true.

Therefore, x = -1 is not a solution of the given equation x\(^{2}\) - x + 1 = 0.

 

3. If one root of the quadratic equation 2x\(^{2}\) + ax - 6 = 0 is 2, find the value of a. Also, find the other root.

Solution:

Since, x = 2 is a root of the gives equation 2x\(^{2}\) + ax - 6 = 0

⟹ 2(2)\(^{2}\) + a × 2 - 6 = 0

⟹ 8 + 2a - 6 = 0

⟹ 2a + 2 = 0

⟹ 2a = -2

⟹ a = \(\frac{-2}{2}\)

⟹ a = -1

Therefore, the value of a = -1

Substituting a = -1, we get:

2x\(^{2}\) + (-1)x - 6 = 0

⟹ 2x\(^{2}\) - x - 6 = 0

⟹ 2x\(^{2}\) - 4x + 3x - 6 = 0

⟹ 2x(x - 2) + 3(x - 2) = 0

⟹ (x - 2)(2x + 3) = 0

⟹ x - 2 = 0 or 2x + 3 = 0

i.e., x = 2 or x = -\(\frac{3}{2}\)

Therefore, the other root is -\(\frac{3}{2}\).


4. Find the value of k for which x = 2 is a root (solution) of equation kx\(^{2}\) + 2x - 3 = 0.

Solution:

Substituting x = 2 in the given equation kx\(^{2}\) + 2x - 3 = 0; we get:

K(2)\(^{2}\) + 2 × 2 - 3 = 0

⟹ 4k + 4 - 3 = 0

⟹ 4k + 1 =

⟹ 4k = -1

⟹ k = -\(\frac{1}{4}\)

Therefore, the value of k = -\(\frac{1}{4}\)

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring









9th Grade Math

From Roots of a Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 04, 24 01:30 AM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Dec 04, 24 01:07 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

  3. Worksheet on Subtraction of Money | Real-life Word Problems | Answers

    Dec 04, 24 12:45 AM

    Worksheet on Subtraction of Money
    Practice the questions given in the worksheet on subtraction of money by using without conversion and by conversion method (without regrouping and with regrouping). Note: Arrange the amount of rupees…

    Read More

  4. Worksheet on Addition of Money | Questions on Adding Amount of Money

    Dec 04, 24 12:06 AM

    Worksheet on Addition of Money
    Practice the questions given in the worksheet on addition of money by using without conversion and by conversion method (without regrouping and with regrouping). Note: Arrange the amount of money in t…

    Read More

  5. Worksheet on Money | Conversion of Money from Rupees to Paisa

    Dec 03, 24 11:37 PM

    Worksheet on Money
    Practice the questions given in the worksheet on money. This sheet provides different types of questions where students need to express the amount of money in short form and long form

    Read More