Methods of Solving Quadratic Equations

We will discuss here about the methods of solving quadratic equations.

The quadratic equations of the form ax\(^{2}\) + bx + c = 0 is solved by any one of the following two methods (a) by factorization and (b) by formula.

(a) By factorization method:

In order to solve the quadratic equation ax\(^{2}\) + bx + c = 0, follow these steps:

Step I: Factorize ax\(^{2}\) + bx + c in linear factors by breaking the middle term or by completing square.

Step II: Equate each factor to zero to get two linear equations (using zero-product rule).

Step III: Solve the two linear equations. This gives two roots (solutions) of the quadratic equation.



Quadratic equation in general form is

ax\(^{2}\) + bx + c = 0, (where a ≠  0) ………………… (i)

Multiplying both sides of, ( i) by 4a,

4a\(^{2}\)x\(^{2}\) + 4abx + 4ac = 0

⟹ (2ax)\(^{2}\) + 2 . 2ax . b + b\(^{2}\) + 4ac - b\(^{2}\) = 0

⟹ (2ax + b)\(^{2}\) = b\(^{2}\) - 4ac [on simplification and transposition]

Now taking square roots on both sides we get

2ax + b = \(\pm \sqrt{b^{2} - 4ac}\))

⟹ 2ax = -b \(\pm \sqrt{b^{2} - 4ac}\))

⟹ x = \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

i.e., \(\frac{-b + \sqrt{b^{2} - 4ac}}{2a}\) or, \(\frac{-b - \sqrt{b^{2} - 4ac}}{2a}\)

Solving the quadratic equation (i), we have got two values of x.

That means, two roots are obtained for the equation, one is x = \(\frac{-b + \sqrt{b^{2} - 4ac}}{2a}\) and the other is x = \(\frac{-b - \sqrt{b^{2} - 4ac}}{2a}\)


Example to Solving quadratic equation applying factorization method:

Solve the quadratic equation 3x\(^{2}\) - x - 2 = 0 by factorization method.

Solution:

3x\(^{2}\) - x - 2 = 0

Breaking the middle term we get,

⟹ 3x\(^{2}\) - 3x + 2x - 2 = 0

⟹ 3x(x - 1) + 2(x - 1) = 0

⟹ (x - 1)(3x + 2) = 0

Now, using zero-product rule we get,

x - 1 = 0 or, 3x + 2 = 0

⟹ x = 1 or x = -\(\frac{2}{3}\)

Therefore, we get x = -\(\frac{2}{3}\), 1.

These are the two solutions of the equation.

 


(b) By using formula:

To form the Sreedhar Acharya’s formula and use it in solving quadratic equations

The solution of the quadratic equation ax^2 + bx + c = 0 are x = \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

In words, x = \(\frac{-(coefficient  of  x) \pm \sqrt{(coefficient  of  x)^{2} – 4(coefficient  of  x^{2})(constant  term)}}{2  ×  coefficient  of  x^{2}}\)

Proof:

Quadratic equation in general form is

ax\(^{2}\) + bx + c = 0, (where a ≠  0) ………………… (i)

Dividing both sides by a, we get

⟹ x\(^{2}\) + \(\frac{b}{a}\)x + \(\frac{c}{a}\) = 0,

⟹ x\(^{2}\) + 2 \(\frac{b}{2a}\)x + (\(\frac{b}{2a}\))\(^{2}\)  - (\(\frac{b}{2a}\))\(^{2}\)  + \(\frac{c}{a}\) = 0

⟹ (x + \(\frac{b}{2a}\))\(^{2}\) - (\(\frac{b^{2}}{4a^{2}}\) - \(\frac{c}{a}\)) = 0

⟹ (x + \(\frac{b}{2a}\))\(^{2}\) - \(\frac{b^{2} - 4ac}{4a^{2}}\) = 0

⟹ (x + \(\frac{b}{2a}\))\(^{2}\) = \(\frac{b^{2} - 4ac}{4a^{2}}\)

⟹ x + \(\frac{b}{2a}\) = ± \(\sqrt{\frac{b^{2} - 4ac}{4a^{2}}}\)

⟹ x = -\(\frac{b}{2a}\)  ± \(\frac{\sqrt{b^{2} - 4ac}}{2a}\)

⟹ x = \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

This is the general formula for finding two roots of any quadratic equation. This formula is known as quadratic formula or Sreedhar Acharya’s formula.

 

Example to Solving quadratic equation applying Sreedhar Achary’s formula:

Solve the quadratic equation 6x\(^{2}\) - 7x + 2 = 0 by applying quadratic formula.

Solution:

6x\(^{2}\) - 7x + 2 = 0

First we need to compare the given equation 6x\(^{2}\) - 7x + 2 = 0 with the general form of the quadratic equation ax\(^{2}\) + bx + c = 0, (where a ≠  0) we get,

a = 6, b = -7 and c =2

Now apply Sreedhar Achary’s formula:

x = \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

⟹ x = \(\frac{-(-7) \pm \sqrt{(-7)^{2} - 4 ∙ 6 ∙ 2}}{2 × 6}\)

⟹ x = \(\frac{7 \pm \sqrt{49 - 48}}{12}\)

⟹ x = \(\frac{7 \pm 1}{12}\)

Thus, x = \(\frac{7 + 1}{12}\) or, \(\frac{7 - 1}{12}\)

⟹ x = \(\frac{8}{12}\) or, \(\frac{6}{12}\)

⟹ x = \(\frac{2}{3}\) or, \(\frac{1}{2}\)

Therefore, the solutions are x = \(\frac{2}{3}\) or, \(\frac{1}{2}\)

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring




9th Grade Math

From Methods of Solving Quadratic Equations to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More

  2. Names of Three Digit Numbers | Place Value |2- Digit Numbers|Worksheet

    Oct 07, 24 04:07 PM

    How to write the names of three digit numbers? (i) The name of one-digit numbers are according to the names of the digits 1 (one), 2 (two), 3 (three), 4 (four), 5 (five), 6 (six), 7 (seven)

    Read More

  3. Worksheets on Number Names | Printable Math Worksheets for Kids

    Oct 07, 24 03:29 PM

    Traceable math worksheets on number names for kids in words from one to ten will be very helpful so that kids can practice the easy way to read each numbers in words.

    Read More

  4. The Number 100 | One Hundred | The Smallest 3 Digit Number | Math

    Oct 07, 24 03:13 PM

    The Number 100
    The greatest 1-digit number is 9 The greatest 2-digit number is 99 The smallest 1-digit number is 0 The smallest 2-digit number is 10 If we add 1 to the greatest number, we get the smallest number of…

    Read More

  5. Missing Numbers Worksheet | Missing Numerals |Free Worksheets for Kids

    Oct 07, 24 12:01 PM

    Missing numbers
    Math practice on missing numbers worksheet will help the kids to know the numbers serially. Kids find difficult to memorize the numbers from 1 to 100 in the age of primary, we can understand the menta

    Read More