Subscribe to our YouTube channel for the latest videos, updates, and tips.


Methods of Solving Quadratic Equations

We will discuss here about the methods of solving quadratic equations.

The quadratic equations of the form ax\(^{2}\) + bx + c = 0 is solved by any one of the following two methods (a) by factorization and (b) by formula.

(a) By factorization method:

In order to solve the quadratic equation ax\(^{2}\) + bx + c = 0, follow these steps:

Step I: Factorize ax\(^{2}\) + bx + c in linear factors by breaking the middle term or by completing square.

Step II: Equate each factor to zero to get two linear equations (using zero-product rule).

Step III: Solve the two linear equations. This gives two roots (solutions) of the quadratic equation.



Quadratic equation in general form is

ax\(^{2}\) + bx + c = 0, (where a ≠  0) ………………… (i)

Multiplying both sides of, ( i) by 4a,

4a\(^{2}\)x\(^{2}\) + 4abx + 4ac = 0

⟹ (2ax)\(^{2}\) + 2 . 2ax . b + b\(^{2}\) + 4ac - b\(^{2}\) = 0

⟹ (2ax + b)\(^{2}\) = b\(^{2}\) - 4ac [on simplification and transposition]

Now taking square roots on both sides we get

2ax + b = \(\pm \sqrt{b^{2} - 4ac}\))

⟹ 2ax = -b \(\pm \sqrt{b^{2} - 4ac}\))

⟹ x = \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

i.e., \(\frac{-b + \sqrt{b^{2} - 4ac}}{2a}\) or, \(\frac{-b - \sqrt{b^{2} - 4ac}}{2a}\)

Solving the quadratic equation (i), we have got two values of x.

That means, two roots are obtained for the equation, one is x = \(\frac{-b + \sqrt{b^{2} - 4ac}}{2a}\) and the other is x = \(\frac{-b - \sqrt{b^{2} - 4ac}}{2a}\)


Example to Solving quadratic equation applying factorization method:

Solve the quadratic equation 3x\(^{2}\) - x - 2 = 0 by factorization method.

Solution:

3x\(^{2}\) - x - 2 = 0

Breaking the middle term we get,

⟹ 3x\(^{2}\) - 3x + 2x - 2 = 0

⟹ 3x(x - 1) + 2(x - 1) = 0

⟹ (x - 1)(3x + 2) = 0

Now, using zero-product rule we get,

x - 1 = 0 or, 3x + 2 = 0

⟹ x = 1 or x = -\(\frac{2}{3}\)

Therefore, we get x = -\(\frac{2}{3}\), 1.

These are the two solutions of the equation.

 


(b) By using formula:

To form the Sreedhar Acharya’s formula and use it in solving quadratic equations

The solution of the quadratic equation ax^2 + bx + c = 0 are x = \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

In words, x = \(\frac{-(coefficient  of  x) \pm \sqrt{(coefficient  of  x)^{2} – 4(coefficient  of  x^{2})(constant  term)}}{2  ×  coefficient  of  x^{2}}\)

Proof:

Quadratic equation in general form is

ax\(^{2}\) + bx + c = 0, (where a ≠  0) ………………… (i)

Dividing both sides by a, we get

⟹ x\(^{2}\) + \(\frac{b}{a}\)x + \(\frac{c}{a}\) = 0,

⟹ x\(^{2}\) + 2 \(\frac{b}{2a}\)x + (\(\frac{b}{2a}\))\(^{2}\)  - (\(\frac{b}{2a}\))\(^{2}\)  + \(\frac{c}{a}\) = 0

⟹ (x + \(\frac{b}{2a}\))\(^{2}\) - (\(\frac{b^{2}}{4a^{2}}\) - \(\frac{c}{a}\)) = 0

⟹ (x + \(\frac{b}{2a}\))\(^{2}\) - \(\frac{b^{2} - 4ac}{4a^{2}}\) = 0

⟹ (x + \(\frac{b}{2a}\))\(^{2}\) = \(\frac{b^{2} - 4ac}{4a^{2}}\)

⟹ x + \(\frac{b}{2a}\) = ± \(\sqrt{\frac{b^{2} - 4ac}{4a^{2}}}\)

⟹ x = -\(\frac{b}{2a}\)  ± \(\frac{\sqrt{b^{2} - 4ac}}{2a}\)

⟹ x = \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

This is the general formula for finding two roots of any quadratic equation. This formula is known as quadratic formula or Sreedhar Acharya’s formula.

 

Example to Solving quadratic equation applying Sreedhar Achary’s formula:

Solve the quadratic equation 6x\(^{2}\) - 7x + 2 = 0 by applying quadratic formula.

Solution:

6x\(^{2}\) - 7x + 2 = 0

First we need to compare the given equation 6x\(^{2}\) - 7x + 2 = 0 with the general form of the quadratic equation ax\(^{2}\) + bx + c = 0, (where a ≠  0) we get,

a = 6, b = -7 and c =2

Now apply Sreedhar Achary’s formula:

x = \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)

⟹ x = \(\frac{-(-7) \pm \sqrt{(-7)^{2} - 4 ∙ 6 ∙ 2}}{2 × 6}\)

⟹ x = \(\frac{7 \pm \sqrt{49 - 48}}{12}\)

⟹ x = \(\frac{7 \pm 1}{12}\)

Thus, x = \(\frac{7 + 1}{12}\) or, \(\frac{7 - 1}{12}\)

⟹ x = \(\frac{8}{12}\) or, \(\frac{6}{12}\)

⟹ x = \(\frac{2}{3}\) or, \(\frac{1}{2}\)

Therefore, the solutions are x = \(\frac{2}{3}\) or, \(\frac{1}{2}\)

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring




9th Grade Math

From Methods of Solving Quadratic Equations to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Speed Distance and Time | Relation between Speed Distance and Time

    May 21, 25 12:58 PM

    Speed is defined as the distance covered per unit time. Speed = (Distance Travelled)/(Time Taken) Or, S = D/T. Speed also requires a unit of measurement. If the distance is in kilometres

    Read More

  2. Math Problem Answers | Solved Math Questions and Answers | Free Math

    May 21, 25 12:45 PM

    Partial fraction
    Math problem answers are solved here step-by-step to keep the explanation clear to the students. In Math-Only-Math you'll find abundant selection of all types of math questions for all the grades

    Read More

  3. Test of Divisibility | Divisibility Rules| Divisible by 2, 3, 5, 9, 10

    May 21, 25 10:29 AM

    The test of divisibility by a number ‘x’ is a short-cut method to detect whether a particular number ‘y’ is divisible by the number ‘x’ or not. Test of divisibility by 2: A number is divisible by 2

    Read More

  4. Divisible by 7 | Test of Divisibility by 7 |Rules of Divisibility by 7

    May 21, 25 10:17 AM

    Divisible by 7
    Divisible by 7 is discussed below: We need to double the last digit of the number and then subtract it from the remaining number. If the result is divisible by 7, then the original number will also be

    Read More

  5. Average Word Problems | Worksheet on Average Questions with Answers

    May 20, 25 05:40 PM

    In average word problems we will solve different types of problems on basic concept of average. 1. Richard scored 80, 53, 19, 77, 29 and 96 runs in 6 innings in a series. Find the average runs scored…

    Read More