Subscribe to our YouTube channel for the latest videos, updates, and tips.


Word Problems on Quadratic Equations by Factoring

We will learn how to solve Word Problems on quadratic equations by factoring.


1. The product of two numbers is 12. If their sum added to the sum of their squares is 32, find the numbers.

Solution:

Let the numbers be x and y.

As their product is 12, we get xy = 12 ..................... (i)

According to the question, x + y + x\(^{2}\) + y\(^{2}\) = 32 ..................... (ii)

From (i), y = \(\frac{12}{x}\)


Putting y = \(\frac{12}{x}\) in (ii), we get

x + \(\frac{12}{x}\) + x\(^{2}\) + (\(\frac{12}{x}\))\(^{2}\) = 32

(x + \(\frac{12}{x}\)) + (x + \(\frac{12}{x}\))\(^{2}\) - 2 x \(\frac{12}{x}\) = 32

⟹ (x + \(\frac{12}{x}\))\(^{2}\) + (x + \(\frac{12}{x}\)) - 56 = 0

Putting x + \(\frac{12}{x}\) = t,

t\(^{2}\) + t - 56 = 0

t\(^{2}\) + 8t – 7t – 56 = 0

t(t + 8) - 7(t + 8) = 0

(t + 8)(t - 7) = 0

t + 8 = 0 or, t – 7 = 0

t = -8 or, t = 7

When t = -8,

x + \(\frac{12}{x}\) = t = -8

x\(^{2}\) + 8x + 12 = 0

x\(^{2}\) + 6x + 2x + 12 = 0

x(x + 6) + 2(x + 6) = 0

(x + 6)(x + 2) = 0

x + 6 = 0 or, x + 2 = 0

x = -6 or, x = -2

When t = 7

x + \(\frac{12}{x}\) = t = 7

x\(^{2}\) - 7x + 12 = 0

x\(^{2}\) - 4x - 3x + 12 = 0

x(x – 4) - 3(x – 4) = 0

(x - 4)(x - 3) = 0

x - 4 = 0 or, x - 3 = 0

x = 4 or 3

Thus, x = -6, -2, 4, 3

Then, the other number y = \(\frac{12}{x}\) = \(\frac{12}{-6}\), \(\frac{12}{-2}\), \(\frac{12}{4}\), \(\frac{12}{3}\) = -2, -6, 3, 4.

Thus, the two numbers x, y are -6, -2, or -2, -6, or 4, 3 or 3, 4.

Therefore, the required two numbers are -6, -2 or 4, 3.

 

2. An association has a fund of $195. In addition that, each member of the association contributes the number of dollars equal to the number of members. The total money is divided equally among the members. If each of the members gets $ 28, find the number of members in the association.

Solution:

Let the number of members be x.

Total contributions from them = $ x\(^{2}\) and the association has a fund of $ 195.

According to the problem,

x\(^{2}\)  + 195 = 28x

⟹ x\(^{2}\)  - 28x + 195 = 0

⟹ x\(^{2}\) - 15x - 13x + 195 = 0

⟹ x(x - 15) - 13(x - 15) = 0

⟹ (x - 15)(x - 13) = 0

Therefore, x = 15 or 13

There are 15 or 13 members in the association.

Note: Two answers are acceptable in this case.

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring





9th Grade Math

From Word Problems on Quadratic Equations by Factoring to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 09, 25 02:37 AM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More