Worksheet on Nature of the Roots of a Quadratic Equation

Practice the questions given in the Worksheet on nature of the roots of a quadratic equation.

We know the nature of the roots of a quadratic equation depends completely on the value of its discriminant.

1. Without solving, comment upon the nature of roots of each of the following equations:

(a) 7x\(^{2}\) - 9x + 2 = 0

(b) 6x\(^{2}\) - 13x + 4 = 0

(c) 25x\(^{2}\) - 10x + 1 = 0

(d) x\(^{2}\) + 2√3 x - 9 = 0

(e) x\(^{2}\) - ax + b\(^{2}\) = 0

(f) 2x\(^{2}\) + 8x + 9 = 0


2. Find the discriminant of the following equations.

(a) x(x - 2) + 1 = 0

(b) \(\frac{1}{x + 2}\) + \(\frac{1}{x - 2}\) = 2


3. Prove that none of the following equations has any real solution.

(a) x\(^{2}\) + x + 1 = 0

(b) x(x - 1) + 1 = 0

(c) x + \(\frac{4}{x}\) - 1 = 0, x ≠ 0

(d) x(x + 1) + 3(x + 3) = 0

(e) \(\frac{x}{x + 1}\) + \(\frac{3}{x - 1}\) = 0; x ≠ 1, -1


4. Find the value of ‘p’, if the following quadratic equation has equal roots: 4x\(^{2}\) - (p - 2)x + 1 = 0

5. Prove that each of the following equation has only one solution. Find the solution.

(a) 4y\(^{2}\) - 28y + 49 = 0

(b) \(\frac{1}{4}\)x\(^{2}\) + \(\frac{1}{3}\)x + \(\frac{1}{9}\) = 0

(c) 8x(2x - 5) + 25 = 0


6. Find the value of λ for which the equation λx\(^{2}\) + 2x + 1 = 0 has real and distinct roots.

7. For what value of k will each of the following equations give equal roots? Also, find the solution for that value of k.

(a) 3x\(^{2}\) + kx + 2 = 0

(b) kx\(^{2}\) - 4x + 1 = 0

(c) 5x\(^{2}\) + 20x + k = 0

(d) (k - 12)x\(^{2}\) + 2(k - 12)x + 2 = 0


8. The equation 3x\(^{2}\) - 12x + z - 5 = 0 has equal roots. Find the value of z.

9. Find k for which the equation 4x\(^{2}\) + kx + 9 = 0 will be satisfied by only one real value of x. Also find the solution.

10. Find the value of ‘z’, if the following equation has equal roots:

(z - 2)x\(^{2}\) - (5 + z)x + 16 = 0

11. Find the nature of roots of the following equation. If they are real, find them.

(a) 3x\(^{2}\) - 2x + \(\frac{1}{3}\) = 0

(b) 3x\(^{2}\) - 6x + 2 = 0

 


Answers for the Worksheet on nature of the roots of a quadratic equation are given below.

 

Answers:

 

1. (a) Rational and unequal

(b) Irrational and unequal

(c) Rational (real) and equal

(d) Irrational and unequal (since, b = 2√3 is irrational)

(e) Irrational and unequal

(f) Imaginary roots

 

2. (a) 0

(b) 17


4. p = -2 or 6

5. (a) \(\frac{7}{2}\)

(b) -\(\frac{2}{3}\)

(c) \(\frac{5}{4}\)

 

6. All real values of λ < 1.

7. (a) ±2√6; when k = 2√6, solution = -\(\frac{2}{√6}\) and when k = -2√6, solution = \(\frac{2}{√6}\)

(b) 4; solution = -\(\frac{1}{2}\)

(c) 20; solution = -2

(d) 14; solution = -1


8. z = 17

9. ± 12; when k = 12, solution = -\(\frac{3}{2}\) and when k = -12, solution = \(\frac{3}{2}\)

10. z = 3 or 51

11. (a) Real, Roots = \(\frac{1}{3}\), \(\frac{1}{3}\)

(b) Real, Roots = \(\frac{√3 - 1}{√3}\), \(\frac{√3 + 1}{√3}\)

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring






9th Grade Math

From Worksheet on Nature of the Roots of a Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Adding 1-Digit Number | Understand the Concept one Digit Number

    Sep 17, 24 02:25 AM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 17, 24 01:47 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 17, 24 12:10 AM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  4. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    Sep 16, 24 11:24 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  5. Worksheet on Tens and Ones | Math Place Value |Tens and Ones Questions

    Sep 16, 24 02:40 PM

    Tens and Ones
    In math place value the worksheet on tens and ones questions are given below so that students can do enough practice which will help the kids to learn further numbers.

    Read More