Worksheet on Nature of the Roots of a Quadratic Equation

Practice the questions given in the Worksheet on nature of the roots of a quadratic equation.

We know the nature of the roots of a quadratic equation depends completely on the value of its discriminant.

1. Without solving, comment upon the nature of roots of each of the following equations:

(a) 7x\(^{2}\) - 9x + 2 = 0

(b) 6x\(^{2}\) - 13x + 4 = 0

(c) 25x\(^{2}\) - 10x + 1 = 0

(d) x\(^{2}\) + 2√3 x - 9 = 0

(e) x\(^{2}\) - ax + b\(^{2}\) = 0

(f) 2x\(^{2}\) + 8x + 9 = 0


2. Find the discriminant of the following equations.

(a) x(x - 2) + 1 = 0

(b) \(\frac{1}{x + 2}\) + \(\frac{1}{x - 2}\) = 2


3. Prove that none of the following equations has any real solution.

(a) x\(^{2}\) + x + 1 = 0

(b) x(x - 1) + 1 = 0

(c) x + \(\frac{4}{x}\) - 1 = 0, x ≠ 0

(d) x(x + 1) + 3(x + 3) = 0

(e) \(\frac{x}{x + 1}\) + \(\frac{3}{x - 1}\) = 0; x ≠ 1, -1


4. Find the value of ‘p’, if the following quadratic equation has equal roots: 4x\(^{2}\) - (p - 2)x + 1 = 0

5. Prove that each of the following equation has only one solution. Find the solution.

(a) 4y\(^{2}\) - 28y + 49 = 0

(b) \(\frac{1}{4}\)x\(^{2}\) + \(\frac{1}{3}\)x + \(\frac{1}{9}\) = 0

(c) 8x(2x - 5) + 25 = 0


6. Find the value of λ for which the equation λx\(^{2}\) + 2x + 1 = 0 has real and distinct roots.

7. For what value of k will each of the following equations give equal roots? Also, find the solution for that value of k.

(a) 3x\(^{2}\) + kx + 2 = 0

(b) kx\(^{2}\) - 4x + 1 = 0

(c) 5x\(^{2}\) + 20x + k = 0

(d) (k - 12)x\(^{2}\) + 2(k - 12)x + 2 = 0


8. The equation 3x\(^{2}\) - 12x + z - 5 = 0 has equal roots. Find the value of z.

9. Find k for which the equation 4x\(^{2}\) + kx + 9 = 0 will be satisfied by only one real value of x. Also find the solution.

10. Find the value of ‘z’, if the following equation has equal roots:

(z - 2)x\(^{2}\) - (5 + z)x + 16 = 0

11. Find the nature of roots of the following equation. If they are real, find them.

(a) 3x\(^{2}\) - 2x + \(\frac{1}{3}\) = 0

(b) 3x\(^{2}\) - 6x + 2 = 0

 


Answers for the Worksheet on nature of the roots of a quadratic equation are given below.

 

Answers:

 

1. (a) Rational and unequal

(b) Irrational and unequal

(c) Rational (real) and equal

(d) Irrational and unequal (since, b = 2√3 is irrational)

(e) Irrational and unequal

(f) Imaginary roots

 

2. (a) 0

(b) 17


4. p = -2 or 6

5. (a) \(\frac{7}{2}\)

(b) -\(\frac{2}{3}\)

(c) \(\frac{5}{4}\)

 

6. All real values of λ < 1.

7. (a) ±2√6; when k = 2√6, solution = -\(\frac{2}{√6}\) and when k = -2√6, solution = \(\frac{2}{√6}\)

(b) 4; solution = -\(\frac{1}{2}\)

(c) 20; solution = -2

(d) 14; solution = -1


8. z = 17

9. ± 12; when k = 12, solution = -\(\frac{3}{2}\) and when k = -12, solution = \(\frac{3}{2}\)

10. z = 3 or 51

11. (a) Real, Roots = \(\frac{1}{3}\), \(\frac{1}{3}\)

(b) Real, Roots = \(\frac{√3 - 1}{√3}\), \(\frac{√3 + 1}{√3}\)

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring






9th Grade Math

From Worksheet on Nature of the Roots of a Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Properties of Division | Division of Property Overview|Math Properties

    Jan 22, 25 01:30 AM

    Properties of Division
    The properties of division are discussed here: 1. If we divide a number by 1 the quotient is the number itself. In other words, when any number is divided by 1, we always get the number itself as the…

    Read More

  2. Terms Used in Division | Dividend | Divisor | Quotient | Remainder

    Jan 22, 25 12:54 AM

    Divide 12 Candies
    The terms used in division are dividend, divisor, quotient and remainder. Division is repeated subtraction. For example: 24 ÷ 6 How many times would you subtract 6 from 24 to reach 0?

    Read More

  3. Divide on a Number Line | Various Division Problems | Solved Examples

    Jan 22, 25 12:41 AM

    How to divide on a number line? Learn to divide using number line to find the quotient. Solved examples to show divide on a number line: 1. Solve 14 ÷ 7 Solution: 7 is subtracted repeatedly

    Read More

  4. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 22, 25 12:18 AM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More

  5. Division Sharing and Grouping | Facts about Division | Basic Division

    Jan 21, 25 08:06 AM

    Sharing and Grouping
    We will learn division sharing and grouping. Share eight strawberries between four children. Let us distribute strawberries equally to all the four children one by one.

    Read More