Worksheet on Nature of the Roots of a Quadratic Equation

Practice the questions given in the Worksheet on nature of the roots of a quadratic equation.

We know the nature of the roots of a quadratic equation depends completely on the value of its discriminant.

1. Without solving, comment upon the nature of roots of each of the following equations:

(a) 7x\(^{2}\) - 9x + 2 = 0

(b) 6x\(^{2}\) - 13x + 4 = 0

(c) 25x\(^{2}\) - 10x + 1 = 0

(d) x\(^{2}\) + 2√3 x - 9 = 0

(e) x\(^{2}\) - ax + b\(^{2}\) = 0

(f) 2x\(^{2}\) + 8x + 9 = 0


2. Find the discriminant of the following equations.

(a) x(x - 2) + 1 = 0

(b) \(\frac{1}{x + 2}\) + \(\frac{1}{x - 2}\) = 2


3. Prove that none of the following equations has any real solution.

(a) x\(^{2}\) + x + 1 = 0

(b) x(x - 1) + 1 = 0

(c) x + \(\frac{4}{x}\) - 1 = 0, x ≠ 0

(d) x(x + 1) + 3(x + 3) = 0

(e) \(\frac{x}{x + 1}\) + \(\frac{3}{x - 1}\) = 0; x ≠ 1, -1


4. Find the value of ‘p’, if the following quadratic equation has equal roots: 4x\(^{2}\) - (p - 2)x + 1 = 0

5. Prove that each of the following equation has only one solution. Find the solution.

(a) 4y\(^{2}\) - 28y + 49 = 0

(b) \(\frac{1}{4}\)x\(^{2}\) + \(\frac{1}{3}\)x + \(\frac{1}{9}\) = 0

(c) 8x(2x - 5) + 25 = 0


6. Find the value of λ for which the equation λx\(^{2}\) + 2x + 1 = 0 has real and distinct roots.

7. For what value of k will each of the following equations give equal roots? Also, find the solution for that value of k.

(a) 3x\(^{2}\) + kx + 2 = 0

(b) kx\(^{2}\) - 4x + 1 = 0

(c) 5x\(^{2}\) + 20x + k = 0

(d) (k - 12)x\(^{2}\) + 2(k - 12)x + 2 = 0


8. The equation 3x\(^{2}\) - 12x + z - 5 = 0 has equal roots. Find the value of z.

9. Find k for which the equation 4x\(^{2}\) + kx + 9 = 0 will be satisfied by only one real value of x. Also find the solution.

10. Find the value of ‘z’, if the following equation has equal roots:

(z - 2)x\(^{2}\) - (5 + z)x + 16 = 0

11. Find the nature of roots of the following equation. If they are real, find them.

(a) 3x\(^{2}\) - 2x + \(\frac{1}{3}\) = 0

(b) 3x\(^{2}\) - 6x + 2 = 0

 


Answers for the Worksheet on nature of the roots of a quadratic equation are given below.

 

Answers:

 

1. (a) Rational and unequal

(b) Irrational and unequal

(c) Rational (real) and equal

(d) Irrational and unequal (since, b = 2√3 is irrational)

(e) Irrational and unequal

(f) Imaginary roots

 

2. (a) 0

(b) 17


4. p = -2 or 6

5. (a) \(\frac{7}{2}\)

(b) -\(\frac{2}{3}\)

(c) \(\frac{5}{4}\)

 

6. All real values of λ < 1.

7. (a) ±2√6; when k = 2√6, solution = -\(\frac{2}{√6}\) and when k = -2√6, solution = \(\frac{2}{√6}\)

(b) 4; solution = -\(\frac{1}{2}\)

(c) 20; solution = -2

(d) 14; solution = -1


8. z = 17

9. ± 12; when k = 12, solution = -\(\frac{3}{2}\) and when k = -12, solution = \(\frac{3}{2}\)

10. z = 3 or 51

11. (a) Real, Roots = \(\frac{1}{3}\), \(\frac{1}{3}\)

(b) Real, Roots = \(\frac{√3 - 1}{√3}\), \(\frac{√3 + 1}{√3}\)

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring






9th Grade Math

From Worksheet on Nature of the Roots of a Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  2. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  3. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More

  4. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Apr 26, 25 03:48 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More

  5. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Apr 26, 25 01:00 PM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More