General Properties of Quadratic Equation

We will discuss here about some of the general properties of quadratic equation.

We know that the general form of quadratic equation is ax^2 + bx + c = 0, where a is the co-efficient of x^2, b is the coefficient of x, c is the constant term and a ≠ 0, since, if a = 0, then the equation will no longer remain a quadratic

When we are expressing any quadratic equation in the form of ax^2 + bx + c =0, we have in the left side of the equation a quadratic expression.

For example, we can write the quadratic equation x^2 + 3x = 10 as x^2 + 3x – 10 = 0.

Now we will learn how to factorize the above quadratic expression.

x^2 + 3x - 10

= x^2 + 5x  - 2x - 10

= x(x + 5) -2 (x + 5)

= (x + 5)(x – 2),

Therefore, x^2 + 3x – 10 = (x + 5)(x – 2) ............ (A)

Note: We know that mn = 0 implies that, either (i) m = 0 or n = 0 or (ii) m = 0 and n = 0. It is not possible that both of m and n are non-zero.

From (A) we get,

(x + 5)(x – 2) = 0, then any one of x + 5 and x - 2 must be zero.

So, factorizing the left side of the equation x^2 + 3x – 10 = 0 we get, (x + 5)(x – 2) = 0

Therefore, any one of (x + 5) and (x – 2) must be zero

i.e., x + 5 = 0 ................ (I)

or, x – 2 = 0 .................. (II)

Both of (I) and (II) represent linear equations, which we can solve to get the value of x.

From equation (I), we get x = -5 and from equation (II), we get x = 2.

Therefore the solutions of the equation are x = -5 and x = 2.

We will solve a quadratic equation in the following way:

(i) First we need to express the given equation in the general form of the quadratic equation ax^2 + bx + c = 0, then

(ii) We need to factorize the left side of the quadratic equation,

(iii) Now express each of the two factor equals to 0 and solve them

(iv)The two solutions are called the roots of the given quadratic equation.


Notes: (i) If b ≠ 0 and c = 0, one root of the quadratic equation is always zero.

For example, in the equation 2x^2 - 7x = 0, there is no constant term. Now factoring the left side of the equation, we get x(2x - 7).

Therefore, x(2x - 7) = 0.

Thus, either x = 0 or, 2x – 7 = 0

either x = 0 or, x = 7/2

Therefore, the two roots of the equation 2x^2 - 7x = 0 are 0, 7/2.

(ii) If b = 0, c = 0, both the roots of the quadratic equation will be zero. For example, if 11x^2 = 0, then dividing both sides by 11, we get x^2 = 0 or x = 0, 0.

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring

9th Grade Math

From General Properties of Quadratic Equation to HOME PAGE

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Formation of Greatest and Smallest Numbers | Arranging the Numbers

    May 19, 24 03:36 PM

    Formation of Greatest and Smallest Numbers
    the greatest number is formed by arranging the given digits in descending order and the smallest number by arranging them in ascending order. The position of the digit at the extreme left of a number…

    Read More

  2. Formation of Numbers with the Given Digits |Making Numbers with Digits

    May 19, 24 03:19 PM

    In formation of numbers with the given digits we may say that a number is an arranged group of digits. Numbers may be formed with or without the repetition of digits.

    Read More

  3. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    May 19, 24 02:23 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  4. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 19, 24 01:26 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More

  5. Worksheets on Comparison of Numbers | Find the Greatest Number

    May 19, 24 10:42 AM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More