Processing math: 100%

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Examine the Roots of a Quadratic Equation

Examining the roots of a quadratic equation means to see the type of its roots i.e., whether they are real or imaginary, rational or irrational, equal or unequal.

The nature of the roots of a quadratic equation depends entirely on the value of its discriminant b2 - 4ac.

In a quadratic equation ax2 + bx + c = 0, a ≠ 0 the coefficients a, b and c are real. We know, the roots (solution) of the equation ax2 + bx + c = 0 are given by x = b±b24ac2a.

1. If b2 - 4ac = 0 then the roots will be x = b±02a = b02a, b+02a = b2a, b2a.

Clearly, b2a is a real number because b and a are real.

Thus, the roots of the equation ax2 + bx + c = 0 are real and equal if b2 – 4ac = 0.


2. If b2 - 4ac > 0 then b24ac will be real and non-zero. As a result, the roots of the equation ax2 + bx + c = 0 will be real and unequal (distinct) if b2 - 4ac > 0.

3. If b2 - 4ac < 0, then b24ac will not be real because (b24ac)2 = b2 - 4ac < 0 and square of a real number always positive.

Thus, the roots of the equation ax2 + bx + c = 0 are not real if b2 - 4ac < 0.

As the value of b2 - 4ac determines the nature of roots (solution), b2 - 4ac is called the discriminant of the quadratic equation.


Definition of discriminant: For the quadratic equation ax2 + bx + c =0, a ≠ 0; the expression b2 - 4ac is called discriminant and is, in general, denoted by the letter ‘D’.

Thus, discriminant D = b2 - 4ac

Note:

Discriminant of

ax2 + bx + c = 0

Nature of roots of

ax2 + bx + c = 0

Value of the roots of

ax2 + bx + c = 0

b2 - 4ac = 0

Real and equal

- b2a, -b2a

b2 - 4ac > 0

Real and unequal

b±b24ac2a

b2 - 4ac < 0

Not real

No real value

When a quadratic equation has two real and equal roots we say that the equation has only one real solution.


Solved examples to examine the nature of roots of a quadratic equation:

1. Prove that the equation 3x2 + 4x + 6 = 0 has no real roots.

Solution:

Here, a = 3, b = 4, c = 6.

So, the discriminant = b2 - 4ac

= 42 - 4 ∙ 3 ∙ 6 = 36 - 72 = -56 < 0.

Therefore, the roots of the given equation are not real.



2. Find the value of ‘p’, if the roots of the following quadratic equation are equal (p - 3)x2 + 6x + 9 = 0.

Solution:

For the equation (p - 3)x2 + 6x + 9 = 0;

a = p - 3, b = 6 and c = 9.

Since, the roots are equal

Therefore, b2 - 4ac = 0

⟹ (6)2 - 4(p - 3) × 9 = 0

⟹ 36 - 36p + 108 = 0

⟹ 144 - 36p = 0

⟹ -36p = - 144

⟹ p = 14436

⟹ p = 4

Therefore, the value of p = 4.


3. Without solving the equation 6x2 - 7x + 2 = 0, discuss the nature of its roots.

Solution:

Comparing 6x2 - 7x + 2 = 0 with ax2 + bx + c = 0 we have a = 6, b = -7, c = 2.

Therefore, discriminant = b2 – 4ac = (-7)2 - 4 ∙ 6 ∙ 2 = 49 - 48 = 1 > 0.

Therefore, the roots (solution) are real and unequal.

Note: Let a, b and c be rational numbers in the equation ax2 + bx + c = 0 and its discriminant b2 - 4ac > 0.

If b2 - 4ac is a perfect square of a rational number then b24ac will be a rational number. So, the solutions x = b±b24ac2a will be rational numbers. But if b2 – 4ac is not a perfect square then b24ac will be an irrational numberand as a result the solutions x = b±b24ac2a will be irrational numbers. In the above example we found that the discriminant b2 – 4ac = 1 > 0 and 1 is a perfect square (1)2. Also 6, -7 and 2 are rational numbers. So, the roots of 6x2 – 7x + 2 = 0 are rational and unequal numbers.

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring






9th Grade Math

From Examine the Roots of a Quadratic Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 19, 25 02:53 PM

    Worksheet on Average
    In worksheet on average we will solve different types of questions on the concept of average, calculating the average of the given quantities and application of average in different problems.

    Read More

  2. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More