Examples on Quadratic Equations

We will discuss here about some examples on quadratic equations.

We know many word problems involving unknown quantities can be translated into quadratic equations in one unknown quantity.


1. Two pipes working together can fill a tank in 35 minutes. If the large pipe alone can fill the tank in 24 minutes less than the time taken by the smaller pipe then find the time taken by each pipe working alone to fill the tank.

Solution:

Let the large pipe and smaller pipe working alone fill the tank in x minutes and y minutes respectively.

Therefore, the large pipe fills \(\frac{1}{x}\) of the tank in 1 minute and the smaller pipe fills \(\frac{1}{y}\) of the tank in 1 minute.


Therefore, two pipes working together can fill (\(\frac{1}{x}\) + \(\frac{1}{y}\)) of the tank in 1 minute.

Therefore, two pipes working together can fill 35(\(\frac{1}{x}\) + \(\frac{1}{y}\)) of the tank in 35 minutes.

From the question, 35(\(\frac{1}{x}\) + \(\frac{1}{y}\)) = 1 (whole being 1). ......................... (i)

Also, x + 24 =y (from the question). ......................... (ii)

Putting y = x + 24 in (i), 35(\(\frac{1}{x}\) + \(\frac{1}{x + 24}\)) = 1

⟹ 35\(\frac{x + 24 + x}{x(x + 24)}\) = 1

⟹ \(\frac{35(2x + 24)}{x(x + 24)}\) = 1

⟹ 35(2x + 24) = x(x + 24)

⟹ 70x + 35 × 24 = x\(^{2}\) + 24x

⟹ x\(^{2}\) - 46x - 840 = 0

⟹ x\(^{2}\) – 60x + 14x – 840 = 0

⟹ x(x - 60) + 14(x - 60) = 0

⟹ (x - 60)(x + 14) = 0

⟹ x - 60 = 0 or, x + 14 = 0

⟹ x = 60 or x = -14

But x cannot be negative. So, x = 60 and then y = x + 24 = 60 + 24 = 84.

Therefore, when working alone, the large pipe takes 60 minutes and the smaller pipe takes 84 minutes to fill the tank.

  

2. Find a positive number, which is less than its square by 30.

Solution:

Let the number be x

By the condition, x\(^{2}\) - x = 30

⟹ x\(^{2}\) - x - 30 = 0

⟹ (x - 6)(x + 5) = 0

⟹ Therefore,  x = 6, -5

As the number is positive, x = - 5 is not acceptable, Thus the required number is 6.


3. The product of the digits of a two-digit number is 12. If 36 is added to the number, a number is obtained which is the same as the number obtained by reversing the digits of the original number.

Solution:

Let the digit at the units place be x and that at the tens place be y.

Then, the number = 10y + x.

The number obtained by reversing the digits = 10x + y

From the question, xy = 12 ................... (i)

10y + x + 36 = 10x + y ........................... (ii)

From (ii), 9y - 9x + 36 = 0

⟹ y – x + 4 =0

⟹ y = x – 4 .................................. (iiii)

Putting y = x- 4 in (i), x(x – 4) =12

⟹ x\(^{2}\) – 4x – 12 = 0

⟹ x\(^{2}\) – 6x + 2x – 12 = 0

⟹ x(x – 6) + 2(x – 6) = 0

⟹ (x – 6)(x + 2) = 0

⟹ x – 6 = 0 or x + 2 = 0

⟹ x = 6 or x = -2

But a digit in a number cannot be negative. So, x ≠ -2.

Therefore, x = 6.

Therefore, from (iii), y = x – 4 = 6 – 4 = 2.

Thus, the original number 10y + x = 10 × 2 + 6 = 20 + 6 = 26.

 

4. After completing a journey of 84 km. A cyclist noticed that he would take 5 hours less, if he could travel at a speed which is 5 km/hour more. What was the speed of cyclist in km/hour?

Solution:

Suppose, the cyclist has travelled with a speed of x km/hour

Therefore, by the condition \(\frac{84}{x}\) - \(\frac{84}{x + 5}\) = 5

⟹ \(\frac{84x + 420 - 84x}{x(x + 5)}\)= 5

⟹ \(\frac{420}{x^{2} + 5x}\) = 5

⟹ 5(x\(^{2}\) + 5x) = 420

⟹ x\(^{2}\) + 5x - 84 = 0

⟹ (x + 12)(x - 7) = 0

Therefore, x = -12, 7

But x ≠- 12, because speed cannot be negative

x = 7

Therefore, the cyclist has travelled with a speed of 7 km/hour.

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring







9th Grade Math

From Examples on Quadratic Equations to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 24, 24 04:33 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  2. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  3. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More

  4. Numerator and Denominator of a Fraction | Numerator of the Fraction

    Feb 24, 24 04:09 PM

    What are the numerator and denominator of a fraction? We have already learnt that a fraction is written with two numbers arranged one over the other and separated by a line.

    Read More

  5. Roman Numerals | System of Numbers | Symbol of Roman Numerals |Numbers

    Feb 24, 24 10:59 AM

    List of Roman Numerals Chart
    How to read and write roman numerals? Hundreds of year ago, the Romans had a system of numbers which had only seven symbols. Each symbol had a different value and there was no symbol for 0. The symbol…

    Read More