Examples on Quadratic Equations

We will discuss here about some examples on quadratic equations.

We know many word problems involving unknown quantities can be translated into quadratic equations in one unknown quantity.


1. Two pipes working together can fill a tank in 35 minutes. If the large pipe alone can fill the tank in 24 minutes less than the time taken by the smaller pipe then find the time taken by each pipe working alone to fill the tank.

Solution:

Let the large pipe and smaller pipe working alone fill the tank in x minutes and y minutes respectively.

Therefore, the large pipe fills \(\frac{1}{x}\) of the tank in 1 minute and the smaller pipe fills \(\frac{1}{y}\) of the tank in 1 minute.


Therefore, two pipes working together can fill (\(\frac{1}{x}\) + \(\frac{1}{y}\)) of the tank in 1 minute.

Therefore, two pipes working together can fill 35(\(\frac{1}{x}\) + \(\frac{1}{y}\)) of the tank in 35 minutes.

From the question, 35(\(\frac{1}{x}\) + \(\frac{1}{y}\)) = 1 (whole being 1). ......................... (i)

Also, x + 24 =y (from the question). ......................... (ii)

Putting y = x + 24 in (i), 35(\(\frac{1}{x}\) + \(\frac{1}{x + 24}\)) = 1

⟹ 35\(\frac{x + 24 + x}{x(x + 24)}\) = 1

⟹ \(\frac{35(2x + 24)}{x(x + 24)}\) = 1

⟹ 35(2x + 24) = x(x + 24)

⟹ 70x + 35 × 24 = x\(^{2}\) + 24x

⟹ x\(^{2}\) - 46x - 840 = 0

⟹ x\(^{2}\) – 60x + 14x – 840 = 0

⟹ x(x - 60) + 14(x - 60) = 0

⟹ (x - 60)(x + 14) = 0

⟹ x - 60 = 0 or, x + 14 = 0

⟹ x = 60 or x = -14

But x cannot be negative. So, x = 60 and then y = x + 24 = 60 + 24 = 84.

Therefore, when working alone, the large pipe takes 60 minutes and the smaller pipe takes 84 minutes to fill the tank.

  

2. Find a positive number, which is less than its square by 30.

Solution:

Let the number be x

By the condition, x\(^{2}\) - x = 30

⟹ x\(^{2}\) - x - 30 = 0

⟹ (x - 6)(x + 5) = 0

⟹ Therefore,  x = 6, -5

As the number is positive, x = - 5 is not acceptable, Thus the required number is 6.


3. The product of the digits of a two-digit number is 12. If 36 is added to the number, a number is obtained which is the same as the number obtained by reversing the digits of the original number.

Solution:

Let the digit at the units place be x and that at the tens place be y.

Then, the number = 10y + x.

The number obtained by reversing the digits = 10x + y

From the question, xy = 12 ................... (i)

10y + x + 36 = 10x + y ........................... (ii)

From (ii), 9y - 9x + 36 = 0

⟹ y – x + 4 =0

⟹ y = x – 4 .................................. (iiii)

Putting y = x- 4 in (i), x(x – 4) =12

⟹ x\(^{2}\) – 4x – 12 = 0

⟹ x\(^{2}\) – 6x + 2x – 12 = 0

⟹ x(x – 6) + 2(x – 6) = 0

⟹ (x – 6)(x + 2) = 0

⟹ x – 6 = 0 or x + 2 = 0

⟹ x = 6 or x = -2

But a digit in a number cannot be negative. So, x ≠ -2.

Therefore, x = 6.

Therefore, from (iii), y = x – 4 = 6 – 4 = 2.

Thus, the original number 10y + x = 10 × 2 + 6 = 20 + 6 = 26.

 

4. After completing a journey of 84 km. A cyclist noticed that he would take 5 hours less, if he could travel at a speed which is 5 km/hour more. What was the speed of cyclist in km/hour?

Solution:

Suppose, the cyclist has travelled with a speed of x km/hour

Therefore, by the condition \(\frac{84}{x}\) - \(\frac{84}{x + 5}\) = 5

⟹ \(\frac{84x + 420 - 84x}{x(x + 5)}\)= 5

⟹ \(\frac{420}{x^{2} + 5x}\) = 5

⟹ 5(x\(^{2}\) + 5x) = 420

⟹ x\(^{2}\) + 5x - 84 = 0

⟹ (x + 12)(x - 7) = 0

Therefore, x = -12, 7

But x ≠- 12, because speed cannot be negative

x = 7

Therefore, the cyclist has travelled with a speed of 7 km/hour.

Quadratic Equation

Introduction to Quadratic Equation

Formation of Quadratic Equation in One Variable

Solving Quadratic Equations

General Properties of Quadratic Equation

Methods of Solving Quadratic Equations

Roots of a Quadratic Equation

Examine the Roots of a Quadratic Equation

Problems on Quadratic Equations

Quadratic Equations by Factoring

Word Problems Using Quadratic Formula

Examples on Quadratic Equations 

Word Problems on Quadratic Equations by Factoring

Worksheet on Formation of Quadratic Equation in One Variable

Worksheet on Quadratic Formula

Worksheet on Nature of the Roots of a Quadratic Equation

Worksheet on Word Problems on Quadratic Equations by Factoring







9th Grade Math

From Examples on Quadratic Equations to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Jul 22, 24 03:27 PM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  2. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Jul 22, 24 02:41 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More

  3. Decimal Place Value Chart |Tenths Place |Hundredths Place |Thousandths

    Jul 21, 24 02:14 PM

    Decimal place value chart
    Decimal place value chart are discussed here: The first place after the decimal is got by dividing the number by 10; it is called the tenths place.

    Read More

  4. Thousandths Place in Decimals | Decimal Place Value | Decimal Numbers

    Jul 20, 24 03:45 PM

    Thousandths Place in Decimals
    When we write a decimal number with three places, we are representing the thousandths place. Each part in the given figure represents one-thousandth of the whole. It is written as 1/1000. In the decim…

    Read More

  5. Hundredths Place in Decimals | Decimal Place Value | Decimal Number

    Jul 20, 24 02:30 PM

    Hundredths Place in Decimals
    When we write a decimal number with two places, we are representing the hundredths place. Let us take plane sheet which represents one whole. Now, we divide the sheet into 100 equal parts. Each part r…

    Read More