Loading [MathJax]/jax/output/HTML-CSS/jax.js

Problems on Compound Interest

More solved problems on compound interest using formula are shown below.

1. The simple interest on a sum of money for 3 years at 6²/₃ % per annum is $ 6750. What will be the compound interest on the same sum at the same rate for the same period, compounded annually?

Solution: 

Given, SI = $ 6750, R = 203% p.a. and T = 3 years. 


sum = 100 × SI / R × T

= $ (100 × 6750 × ³/₂₀ × 1/3 ) = $ 33750. 

Now, P = $ 33750, R = 203% p.a. and T = 3 years. 

Therefore, amount after 3 years 


= $ {33750 × (1 + (20/3 × 100)}³ [using A = P (1 + R/100)ᵀ]

= $ (33750 × 16/15 × 16/15 × 16/15) = $ 40960.

Thus, amount = $ 40960.

Hence, compound interest = $ (40960 - 33750) = $ 7210.

2. The difference between the compound interest, compounded annually and the simple interest on a certain sum for 2 years at 6% per annum is $ 18. Find the sum.

Solution:

Let the sum be $ 100. Then,

SI = $ (100 × 6 × 2/100) = $ 12

and compound interest = $ {100 × (1 + 6/100)² - 100}

= $ {(100 × 53/50 × 53/50) - 100} = $ (2809/25 - 100) = $ 309/25

Therefore, (CI) - (SI) = $ (309/25 – 100) = $ 9/25

If the difference between the CI and SI is $ 9/25, then the sum = $ 100.

If the difference between the CI and SI is $ 18, then the sum = $ (100 × 25/9 × 18 )

= $ 5000.

Hence, the required sum is $ 5000.

Alternative method

Let the sum be $ P.

Then, SI = $ (P × 6/100 × 2) = $ 3P/25

And, CI = $ {P × (1 + 6/100)² - P}

= $ {(P × 53/50 × 53/50) - P} = $ (28092500P - P) = $ (309P/2500) 


(CI) - (SI) = $ (309P/2500 – 3P/25) = $ (9P/2500)

Therefore, 9P/2500 = 18

⇔ P = 2500 × 18/9

⇔ P = 5000.

Hence, the required sum is $ 5000.

3. A certain sum amounts to $ 72900 in 2 years at 8% per annum compound interest, compounded annually. Find the sum.

Solution:

Let the sum be $ 100. Then,

amount = $ {100 × (1 + 8/100)²}

= $ (100 × 27/25 × 27/25) = $ (2916/25)

If the amount is $ 2916/25 then the sum = $ 100.

If the amount is $ 72900 then the sum = $ (100 × 25/2916 × 72900) = $ 62500.

Hence, the required sum is $ 62500.

Alternative method

Let the sum be $ P. Then,

amount = $ {P × (1 + 8/100)²}

= $ {P × 27/25 × 27/25} = $ (729P/625)

Therefore, 729P/625 = 72900

⇔ P = (72900 × 625)/729

⇔ P = 62500.

Hence, the required sum is $ 62500.

4. In this question the formula is when the interest is compounded annually to solve this problem on compound interest. 4. At what rate per cent per annum will Ron lends a sum of $2000 to Ben. Ben returned after 2 years $2205, compounded annually?

Solution:

Let the required rate be R% per annum.

Here, A = $ 2205, P = $ 2000 and n = 2 years.

Using the formula A = P(1 + R/100)ⁿ,

2205 = 2000 × ( 1 + R/100)²

⇒ (1 + R/100)² = 2205/2000 = 441/400 = (21/20)²

⇒ ( 1 + R/100) = 21/20

⇒ R/100 = (21/20 – 1) = 1/20

⇒ R = (100 × 1/20) = 5

Hence, the required rate of interest is 5% per annum.

5. A man deposited $1000 in a bank. In return he got $1331. Bank gave interest 10% per annum. How long did he kept the money in the bank?

Solution:

Let the required time be n years. Then,

amount = $ {1000 × (1 + 10/100)ⁿ}

= $ {1000 × (11/10)ⁿ}

Therefore, 1000 × (11/10)ⁿ = 1331 [since, amount = $ 1331 (given)]

⇒ (11/10)ⁿ = 1331/1000 = 11 × 11 × 11/ 10 × 10 × 10 = (11/10)³

⇒ (11/10)ⁿ = (11/10)³

⇒ n = 3.

Thus, n = 3.

Hence, the required time is 3 years.

 Compound Interest

Compound Interest

Compound Interest with Growing Principal

Compound Interest with Periodic Deductions

Compound Interest by Using Formula

Compound Interest when Interest is Compounded Yearly

Compound Interest when Interest is Compounded Half-Yearly

Compound Interest when Interest is Compounded Quarterly

Problems on Compound Interest

Variable Rate of Compound Interest

Difference of Compound Interest and Simple Interest

Practice Test on Compound Interest

Uniform Rate of Growth

Uniform Rate of Depreciation

Uniform Rate of Growth and Depreciation


 Compound Interest - Worksheet

Worksheet on Compound Interest

Worksheet on Compound Interest when Interest is Compounded Half-Yearly

Worksheet on Compound Interest with Growing Principal

Worksheet on Compound Interest with Periodic Deductions

Worksheet on Variable Rate of Compound Interest

Worksheet on Difference of Compound Interest and Simple Interest

Worksheet on Uniform Rate of Growth

Worksheet on Uniform Rate of Depreciation

Worksheet on Uniform Rate of Growth and Depreciation








8th Grade Math Practice

From Problems on Compound Interest to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Successor and Predecessor | Successor of a Whole Number | Predecessor

    Jul 29, 25 12:59 AM

    Successor and Predecessor
    The number that comes just before a number is called the predecessor. So, the predecessor of a given number is 1 less than the given number. Successor of a given number is 1 more than the given number…

    Read More

  2. Worksheet on Area, Perimeter and Volume | Square, Rectangle, Cube,Cubo

    Jul 28, 25 01:52 PM

    Volume of a Cuboids
    In this worksheet on area perimeter and volume you will get different types of questions on find the perimeter of a rectangle, find the perimeter of a square, find the area of a rectangle, find the ar…

    Read More

  3. Worksheet on Volume of a Cube and Cuboid |The Volume of a RectangleBox

    Jul 25, 25 03:15 AM

    Volume of a Cube and Cuboid
    We will practice the questions given in the worksheet on volume of a cube and cuboid. We know the volume of an object is the amount of space occupied by the object.1. Fill in the blanks:

    Read More

  4. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 24, 25 03:46 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More

  5. Volume of a Cube | How to Calculate the Volume of a Cube? | Examples

    Jul 23, 25 11:37 AM

    Volume of a Cube
    A cube is a solid box whose every surface is a square of same area. Take an empty box with open top in the shape of a cube whose each edge is 2 cm. Now fit cubes of edges 1 cm in it. From the figure i…

    Read More