Uniform Rate of Growth

We will discuss here how to apply the principle of compound interest in the problems of uniform rate of growth or appreciation.

The word growth can be used in several ways:

(i) The growth of industries in the country

(ii) The rapid growth of plants or inflation, etc.

If the rate of growth occurs at the same rate, we call it as uniform increase or growth

When the growth of industries or, production in any particular industry is takes into consideration:

Then formula Q = P(1 + \(\frac{r}{100}\))\(^{n}\) can be used as:

Production after n years = Initial (original) production (1 + \(\frac{r}{100}\))\(^{n}\) where rate of growth in production is r%.

In the similar manner, the formula Q = P(1 + \(\frac{r}{100}\))\(^{n}\) can be used for the growth of plants, growth of inflation, etc.

If the present value P of a quantity increase at the rate of r% per unit of time then the value Q of the quantity after n units of time is given by

Q = P(1 + \(\frac{r}{100}\))\(^{n}\) and growth = Q - P = P{(1 + \(\frac{r}{100}\))\(^{n}\) - 1}

(i) If the present population of a town = P, rate of growth of population = r % p.a. then the population of the town after n years is Q, where

Q = P(1 + \(\frac{r}{100}\))\(^{n}\) and growth of population = Q - P = P{(1 + \(\frac{r}{100}\))\(^{n}\) - 1}

 (ii) If the present price of a house = P, rate of appreciation in price of the house = r % p.a. then the price of the house after n years is Q, where

Q = P(1 + \(\frac{r}{100}\))\(^{n}\) and appreciation in price = Q - P = P{(1 + \(\frac{r}{100}\))\(^{n}\) - 1}

Increase in population, increase in number of students in academic institutions, increase in production in the fields of agriculture and industry are examples of uniform increase or growth.


Solved examples on the principle of compound interest in the uniform rate of growth (appreciation):

1. The population of a village increases by 10% every year. If the present population is 6000, what will be the population of the village after 3 years?

Solution:

The present population P = 6000,

Rate (r) = 10

Unit of time being year (n) = 3

Q = P(1 + \(\frac{r}{100}\))\(^{n}\)

⟹ Q = 6000(1 + \(\frac{10}{100}\))\(^{3}\)

⟹ Q = 6000(1 + \(\frac{1}{10}\))\(^{3}\)

⟹ Q = 6000(\(\frac{11}{10}\))\(^{3}\)

⟹ Q = 6000 × (\(\frac{11}{10}\)) × (\(\frac{11}{10}\)) × (\(\frac{11}{10}\))

⟹ Q = 7986

Therefore, the population of the village will be 7986 after 3 years.

2. The present population of Berlin is 2000000. If the rate of increase of population of Berlin at the end of a year is 2% of the population at the beginning of the year, find the population of Berlin after 3 years?

Solution:

Population of Berlin after 3 years

Q = P(1 + \(\frac{r}{100}\))\(^{n}\)

⟹ Q = 200000(1 + \(\frac{2}{100}\))\(^{3}\)

⟹ Q= 200000(1 + \(\frac{1}{50}\))\(^{3}\)

⟹ Q= 200000(\(\frac{51}{50}\))\(^{3}\)

⟹ Q= 200000(\(\frac{51}{50}\)) × (\(\frac{51}{50}\)) × (\(\frac{51}{50}\))

⟹ Q = 2122416

Therefore, the population of Berlin after 3 years = 2122416

 

3. A man buys a plot of land for $ 150000. If the value of the land appreciates by 12% every year then find the profit that the man will make by selling the plot after 2 years.

Solution:

The present price of the land, P = $ 150000, r = 12 and n = 2

Q = P(1 + \(\frac{r}{100}\))\(^{n}\)

⟹ Q = $ 150000(1 + \(\frac{12}{100}\))\(^{2}\)

⟹ Q = $ 150000(1 + \(\frac{3}{25}\))\(^{2}\)

⟹ Q = $ 150000(\(\frac{28}{25}\))\(^{2}\)

⟹ Q = $ 150000 × (\(\frac{28}{25}\)) × (\(\frac{28}{25}\))

⟹ Q = $ 188160

Therefore, the required profit = Q – P = $ 188160 - $ 150000 = $ 38160

Compound Interest

Compound Interest

Compound Interest with Growing Principal

Compound Interest with Periodic Deductions

Compound Interest by Using Formula

Compound Interest when Interest is Compounded Yearly

Compound Interest when Interest is Compounded Half-Yearly

Compound Interest when Interest is Compounded Quarterly

Problems on Compound Interest

Variable Rate of Compound Interest

Difference of Compound Interest and Simple Interest

Practice Test on Compound Interest


Compound Interest - Worksheet

Worksheet on Compound Interest

Worksheet on Compound Interest when Interest is Compounded Half-Yearly

Worksheet on Compound Interest with Growing Principal

Worksheet on Compound Interest with Periodic Deductions

Worksheet on Variable Rate of Compound Interest

Worksheet on Difference of Compound Interest and Simple Interest



8th Grade Math Practice 

From Uniform Rate of Growth to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Measuring Capacity | Standard Unit of Capacity | Litre | Millilitres

    Nov 29, 23 01:15 AM

    2 Tablespoonful of Water
    We will discuss about measuring capacity. The milkman measures milk in liters. Petrol is given in liters. Mobil oil is sold in liters. Two milk bottles contain 1 liter of milk. One milk bottle

    Read More

  2. Addition and Subtraction of Units of Measurement | Metric Units

    Nov 29, 23 12:54 AM

    Addition of Lengths
    We can add the units of measurement like decimal numbers. 1. Add 5 m 9 dm and 11 m and 5 dm Solution: 5 m 9 dm = 5.9 m 11 m 5 dm = 11.5 m Hence, 5 m 9 dm + 11 m 5 dm = 17 m 4 dm or 17.4 m 2. Add 15 cm…

    Read More

  3. 1 to 10 Times Tables | 1 - 10 Times Table Chart |Multiplication Tables

    Nov 29, 23 12:50 AM

    1 to 10 Times Tables
    Memorizing 1 to 10 Times Tables are very important for mental math and quick calculations. Times Tables are used during multiplication and division. Let us learn all the times tables from 1 to 10 to i…

    Read More