Compound Interest when Interest is Compounded Half-Yearly

We will learn how to use the formula for calculating the compound interest when interest is compounded half-yearly.

Computation of compound interest by using growing principal becomes lengthy and complicated when the period is long. If the rate of interest is annual and the interest is compounded half-yearly (i.e., 6 months or, 2 times in a year) then the number of years (n) is doubled (i.e., made 2n) and the rate of annual interest (r) is halved (i.e., made \(\frac{r}{2}\)).  In such cases we use the following formula for compound interest when the interest is calculated half-yearly.

If the principal = P, rate of interest per unit time = \(\frac{r}{2}\)%, number of units of time = 2n, the amount = A and the compound interest = CI

Then

A = P(1 + \(\frac{\frac{r}{2}}{100}\))\(^{2n}\)

Here, the rate percent is divided by 2 and the number of years is multiplied by 2

Therefore,  CI = A - P = P{(1 + \(\frac{\frac{r}{2}}{100}\))\(^{2n}\) - 1}

Note:

A = P(1 + \(\frac{\frac{r}{2}}{100}\))\(^{2n}\) is the relation among the four quantities P, r, n and A.

Given any three of these, the fourth can be found from this formula.

CI = A - P = P{(1 + \(\frac{\frac{r}{2}}{100}\))\(^{2n}\) - 1} is the relation among the four quantities P, r, n and CI.

Given any three of these, the fourth can be found from this formula.


Word problems on compound interest when interest is compounded half-yearly:

1. Find the amount and the compound interest on $ 8,000 at 10 % per annum for 1\(\frac{1}{2}\) years if the interest is compounded half-yearly.

Solution:

Here, the interest is compounded half-yearly. So,

Principal (P) = $ 8,000

Number of years (n) = 1\(\frac{1}{2}\) × 2 = \(\frac{3}{2}\) × 2 = 3

Rate of interest compounded half-yearly (r) = \(\frac{10}{2}\)% = 5%

Now, A = P (1 + \(\frac{r}{100}\))\(^{n}\)

A = $ 8,000(1 + \(\frac{5}{100}\))\(^{3}\)

A = $ 8,000(1 + \(\frac{1}{20}\))\(^{3}\)

A = $ 8,000 × (\(\frac{21}{20}\))\(^{3}\)

A = $ 8,000 × \(\frac{9261}{8000}\)

A = $ 9,261 and

Compound interest = Amount - Principal

                          = $ 9,261 - $ 8,000

                          = $ 1,261

Therefore, the amount is $ 9,261 and the compound interest is $ 1,261

 

2. Find the amount and the compound interest on $ 4,000 is 1\(\frac{1}{2}\) years at 10 % per annum compounded half-yearly.

Solution:

Here, the interest is compounded half-yearly. So,

Principal (P) = $ 4,000

Number of years (n) = 1\(\frac{1}{2}\) × 2 = \(\frac{3}{2}\) × 2 = 3

Rate of interest compounded half-yearly (r) = \(\frac{10}{2}\)% = 5%

Now, A = P (1 + \(\frac{r}{100}\))\(^{n}\)

A = $ 4,000(1 + \(\frac{5}{100}\))\(^{3}\)

A = $ 4,000(1 + \(\frac{1}{20}\))\(^{3}\)

A = $ 4,000 × (\(\frac{21}{20}\))\(^{3}\)

A = $ 4,000 × \(\frac{9261}{8000}\)

A = $ 4,630.50 and

Compound interest = Amount - Principal

                          = $ 4,630.50 - $ 4,000

                          = $ 630.50

Therefore, the amount is $ 4,630.50 and the compound interest is $ 630.50

Compound Interest

Compound Interest

Compound Interest with Growing Principal

Compound Interest with Periodic Deductions

Compound Interest by Using Formula

Compound Interest when Interest is Compounded Yearly

Problems on Compound Interest

Variable Rate of Compound Interest

Practice Test on Compound Interest


Compound Interest - Worksheet

Worksheet on Compound Interest

Worksheet on Compound Interest with Growing Principal

Worksheet on Compound Interest with Periodic Deductions


8th Grade Math Practice 

From Compound Interest when Interest is Compounded Half-Yearly to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More

  2. Names of Three Digit Numbers | Place Value |2- Digit Numbers|Worksheet

    Oct 07, 24 04:07 PM

    How to write the names of three digit numbers? (i) The name of one-digit numbers are according to the names of the digits 1 (one), 2 (two), 3 (three), 4 (four), 5 (five), 6 (six), 7 (seven)

    Read More

  3. Worksheets on Number Names | Printable Math Worksheets for Kids

    Oct 07, 24 03:29 PM

    Traceable math worksheets on number names for kids in words from one to ten will be very helpful so that kids can practice the easy way to read each numbers in words.

    Read More

  4. The Number 100 | One Hundred | The Smallest 3 Digit Number | Math

    Oct 07, 24 03:13 PM

    The Number 100
    The greatest 1-digit number is 9 The greatest 2-digit number is 99 The smallest 1-digit number is 0 The smallest 2-digit number is 10 If we add 1 to the greatest number, we get the smallest number of…

    Read More

  5. Missing Numbers Worksheet | Missing Numerals |Free Worksheets for Kids

    Oct 07, 24 12:01 PM

    Missing numbers
    Math practice on missing numbers worksheet will help the kids to know the numbers serially. Kids find difficult to memorize the numbers from 1 to 100 in the age of primary, we can understand the menta

    Read More