Compound Interest when Interest is Compounded Yearly

We will learn how to use the formula for calculating the compound interest when interest is compounded yearly.

Computation of compound interest by using growing principal becomes lengthy and complicated when the period is long. If the rate of interest is annual and the interest is compounded annually then in such cases we use the following formula for compound interest.

If the principal = P, rate of interest per unit time = r %, number of units of time = n, the amount = A and the compound interest = CI

Then

A = P(1 + \(\frac{r}{100}\))\(^{n}\) and CI = A - P = P{(1 + \(\frac{r}{100}\))\(^{n}\) - 1}

Note:

A = P(1 + \(\frac{r}{100}\))\(^{n}\) is the relation among the four quantities P, r, n and A.

Given any three of these, the fourth can be found from this formula.

CI = A - P = P{(1 + \(\frac{r}{100}\))\(^{n}\) - 1} is the relation among the four quantities P, r, n and CI.

Given any three of these, the fourth can be found from this formula.


Word problems on compound interest when interest is compounded yearly:

1. Find the amount and the compound interest on $ 7,500 in 2 years and at 6% compounded yearly.

Solution:

Here,

 Principal (P) = $ 7,500

Number of years (n) = 2

Rate of interest compounded yearly (r) = 6%

A = P(1 + \(\frac{r}{100}\))\(^{n}\)

   = $ 7,500(1 + \(\frac{6}{100}\))\(^{2}\)

   = $ 7,500 × (\(\frac{106}{100}\))\(^{2}\)

   = $ 7,500 × \(\frac{11236}{10000}\)

   = $ 8,427

Therefore, the required amount = $ 8,427 and

Compound interest = Amount - Principal

                          = $ 8,427 - $ 7,500

                          = $ 927

2. In how many years will a sum of $ 1,00,000 amount to $ 1,33,100 at the compound interest rate of 10% per annum?

Solution:

Let the number of years = n

Here,

Principal (P) = $ 1,00,000

Amount (A) = $ 1,33,100

Rate of interest compounded yearly (r) = 10

Therefore,

A = P(1 + \(\frac{r}{100}\))\(^{n}\)

133100 = 100000(1 + \(\frac{10}{100}\))\(^{n}\)

\(\frac{133100}{100000}\) = (1 + \(\frac{1}{10}\))\(^{n}\)

\(\frac{1331}{1000}\)= (\(\frac{11}{10}\))\(^{n}\)

(\(\frac{11}{10}\))\(^{3}\) = (\(\frac{11}{10}\))\(^{n}\)

n = 3

Therefore, at the rate of compound interest 10% per annum, Rs. 100000 will amount to $ 133100 in 3 years.

3. A sum of money becomes $ 2,704 in 2 years at a compound interest rate 4% per annum. Find

(i) the sum of money at the beginning

(ii) the interest generated.

Solution:

Let the sum of money at the beginning = $ P

Here,

Amount (A) = $ 2,704

Rate of interest compounded yearly (r) = 4

Number of years (n) = 2

(i) A = P(1 + \(\frac{r}{100}\))\(^{n}\)

⟹ 2,704 = P(1 + \(\frac{4}{100}\))\(^{2}\)

⟹ 2,704 = P(1 + \(\frac{1}{25}\))\(^{2}\)

⟹ 2,704 = P(\(\frac{26}{25}\))\(^{2}\)

⟹ 2,704 = P × \(\frac{676}{625}\)

⟹ P = 2,704 × \(\frac{625}{676}\)

 P = 2,500

Therefore, the sum of money at the beginning was $ 2,500

(ii) The interest generated = Amount – Principal

                                    = $2,704 - $2,500

                                    = $ 204


4. Find the rate of compound interest for $ 10,000 amounts to $ 11,000 in two years.

Solution:

Let the rate of compound interest be r% per annum.

Principal (P) = $ 10,000

Amount (A) = $ 11,000

Number of years (n) = 2

Therefore,

A = P(1 + \(\frac{r}{100}\))\(^{n}\)

 10000(1 + \(\frac{r}{100}\))\(^{2}\) = 11664

 (1 + \(\frac{r}{100}\))\(^{2}\) = \(\frac{11664}{10000}\)

 (1 + \(\frac{r}{100}\))\(^{2}\) = \(\frac{729}{625}\)

 (1 + \(\frac{r}{100}\))\(^{2}\) = (\(\frac{27}{25}\))

⟹ 1 + \(\frac{r}{100}\) = \(\frac{27}{25}\)

⟹ \(\frac{r}{100}\) = \(\frac{27}{25}\) - 1

 \(\frac{r}{100}\) = \(\frac{2}{25}\)

⟹ 25r = 200

 r = 8

Therefore, the required rate of compound interest is 8 % per annum.

Compound Interest

Compound Interest

Compound Interest with Growing Principal

Compound Interest with Periodic Deductions

Compound Interest by Using Formula

Problems on Compound Interest

Variable Rate of Compound Interest

Practice Test on Compound Interest


Compound Interest - Worksheet

Worksheet on Compound Interest

Worksheet on Compound Interest with Growing Principal

Worksheet on Compound Interest with Periodic Deductions




8th Grade Math Practice 

From Compound Interest when Interest is Compounded Yearly to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Data Handling | Collection of Objects |Information Collected

    Dec 15, 24 02:21 PM

    Data Handling Count and Write
    We have learnt, that a collection of objects can be stored out based on their color, shape, size or any other common thing among them. We can organise all the information in a table to understand how…

    Read More

  2. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 15, 24 10:27 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  3. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  4. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  5. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More