Compound Interest when Interest is Compounded Quarterly

We will learn how to use the formula for calculating the compound interest when interest is compounded quarterly.

Computation of compound interest by using growing principal becomes lengthy and complicated when the period is long. If the rate of interest is annual and the interest is compounded quarterly (i.e., 3 months or, 4 times in a year) then the number of years (n) is 4 times (i.e., made 4n) and the rate of annual interest (r) is one-fourth (i.e., made \(\frac{r}{4}\)).  In such cases we use the following formula for compound interest when the interest is calculated quarterly.

If the principal = P, rate of interest per unit time = \(\frac{r}{4}\)%, number of units of time = 4n, the amount = A and the compound interest = CI

Then

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

Here, the rate percent is divided by 4 and the number of years is multiplied by 4.

Therefore, CI = A - P = P{(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\) - 1}

Note:

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\) is the relation among the four quantities P, r, n and A.

Given any three of these, the fourth can be found from this formula.

CI = A - P = P{(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\) - 1} is the relation among the four quantities P, r, n and CI.

Given any three of these, the fourth can be found from this formula.


Word problems on compound interest when interest is compounded quarterly:

1. Find the compound interest when $1,25,000 is invested for 9 months at 8% per annum, compounded quarterly.

Solution:

Here, P = principal amount (the initial amount) = $ 1,25,000

Rate of interest (r) = 8 % per annum

Number of years the amount is deposited or borrowed for (n) = \(\frac{9}{12}\) year = \(\frac{3}{4}\) year.

Therefore,

The amount of money accumulated after n years (A) = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

                                                                       = $ 1,25,000 (1 + \(\frac{\frac{8}{4}}{100}\))\(^{4 ∙ \frac{3}{4}}\)

                                                                       = $ 1,25,000 (1 + \(\frac{2}{100}\))\(^{3}\)

                                                                       = $ 1,25,000 (1 + \(\frac{1}{50}\))\(^{3}\)

                                                                       = $ 1,25,000 × (\(\frac{51}{50}\))\(^{3}\)

                                                                       = $ 1,25,000 × \(\frac{51}{50}\) × \(\frac{51}{50}\) × \(\frac{51}{50}\)

                                                                       = $ 1,32,651

Therefore, compound interest $ (1,32,651 - 1,25,000) = $ 7,651.

 

2. Find the compound interest on $10,000 if Ron took loan from a bank for 1 year at 8 % per annum, compounded quarterly.

Solution:

Here, P = principal amount (the initial amount) = $ 10,000

Rate of interest (r) = 8 % per annum

Number of years the amount is deposited or borrowed for (n) = 1 year

Using the compound interest when interest is compounded quarterly formula, we have that

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

   = $ 10,000 (1 + \(\frac{\frac{8}{4}}{100}\))\(^{4 ∙ 1}\)

   = $ 10,000 (1 + \(\frac{2}{100}\))\(^{4}\)

   = $ 10,000 (1 + \(\frac{1}{50}\))\(^{4}\)

   = $ 10,000 × (\(\frac{51}{50}\))\(^{4}\)

   = $ 10,000 × \(\frac{51}{50}\) × \(\frac{51}{50}\) × \(\frac{51}{50}\) × \(\frac{51}{50}\)

   = $ 10824.3216

   = $ 10824.32 (Approx.)

Therefore, compound interest $ (10824.32 - $ 10,000) = $ 824.32


3. Find the amount and the compound interest on $ 1,00,000 compounded quarterly for 9 months at the rate of 4% per annum.

Solution:

Here, P = principal amount (the initial amount) = $ 1,00,000

Rate of interest (r) = 4 % per annum

Number of years the amount is deposited or borrowed for (n) = \(\frac{9}{12}\) year = \(\frac{3}{4}\) year.

Therefore,

The amount of money accumulated after n years (A) = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

                                                                       = $ 1,00,000 (1 + \(\frac{\frac{4}{4}}{100}\))\(^{4 ∙ \frac{3}{4}}\)

                                                                       = $ 1,00,000 (1 + \(\frac{1}{100}\))\(^{3}\)

                                                                       = $ 1,00,000 × (\(\frac{101}{100}\))\(^{3}\)

                                                                       = $ 1,00,000 × \(\frac{101}{100}\) × \(\frac{101}{100}\) × \(\frac{101}{100}\)

                                                                       = $ 103030.10

Therefore, the required amount = $ 103030.10 and compound interest $ ($ 103030.10 - $ 1,00,000) = $ 3030.10

 

4. If $1,500.00 is invested at a compound interest rate 4.3% per annum compounded quarterly for 72 months, find the compound interest.

Solution:

Here, P = principal amount (the initial amount) = $1,500.00

Rate of interest (r) = 4.3 % per annum

Number of years the amount is deposited or borrowed for (n) = \(\frac{72}{12}\) years = 6 years.

A = amount of money accumulated after n years

Using the compound interest when interest is compounded quarterly formula, we have that

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

   = $1,500.00 (1 + \(\frac{\frac{4.3}{4}}{100}\))\(^{4 ∙ 6}\)

   = $1,500.00 (1 + \(\frac{1.075}{100}\))\(^{24}\)

   = $1,500.00 × (1 + 0.01075)\(^{24}\)

   = $1,500.00 × (1.01075)\(^{24}\)

   = $ 1938.83682213

   = $ 1938.84 (Approx.)

Therefore, the compound interest after 6 years is approximately $ (1,938.84 - 1,500.00) = $ 438.84.

Compound Interest

Compound Interest

Compound Interest with Growing Principal

Compound Interest with Periodic Deductions

Compound Interest by Using Formula

Compound Interest when Interest is Compounded Yearly

Compound Interest when Interest is Compounded Half-Yearly

Problems on Compound Interest

Variable Rate of Compound Interest

Practice Test on Compound Interest


Compound Interest - Worksheet

Worksheet on Compound Interest

Worksheet on Compound Interest with Growing Principal

Worksheet on Compound Interest with Periodic Deductions




8th Grade Math Practice 

From Compound Interest when Interest is Compounded Quarterly to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More