Compound Interest when Interest is Compounded Quarterly

We will learn how to use the formula for calculating the compound interest when interest is compounded quarterly.

Computation of compound interest by using growing principal becomes lengthy and complicated when the period is long. If the rate of interest is annual and the interest is compounded quarterly (i.e., 3 months or, 4 times in a year) then the number of years (n) is 4 times (i.e., made 4n) and the rate of annual interest (r) is one-fourth (i.e., made \(\frac{r}{4}\)).  In such cases we use the following formula for compound interest when the interest is calculated quarterly.

If the principal = P, rate of interest per unit time = \(\frac{r}{4}\)%, number of units of time = 4n, the amount = A and the compound interest = CI

Then

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

Here, the rate percent is divided by 4 and the number of years is multiplied by 4.

Therefore, CI = A - P = P{(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\) - 1}

Note:

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\) is the relation among the four quantities P, r, n and A.

Given any three of these, the fourth can be found from this formula.

CI = A - P = P{(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\) - 1} is the relation among the four quantities P, r, n and CI.

Given any three of these, the fourth can be found from this formula.


Word problems on compound interest when interest is compounded quarterly:

1. Find the compound interest when $1,25,000 is invested for 9 months at 8% per annum, compounded quarterly.

Solution:

Here, P = principal amount (the initial amount) = $ 1,25,000

Rate of interest (r) = 8 % per annum

Number of years the amount is deposited or borrowed for (n) = \(\frac{9}{12}\) year = \(\frac{3}{4}\) year.

Therefore,

The amount of money accumulated after n years (A) = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

                                                                       = $ 1,25,000 (1 + \(\frac{\frac{8}{4}}{100}\))\(^{4 ∙ \frac{3}{4}}\)

                                                                       = $ 1,25,000 (1 + \(\frac{2}{100}\))\(^{3}\)

                                                                       = $ 1,25,000 (1 + \(\frac{1}{50}\))\(^{3}\)

                                                                       = $ 1,25,000 × (\(\frac{51}{50}\))\(^{3}\)

                                                                       = $ 1,25,000 × \(\frac{51}{50}\) × \(\frac{51}{50}\) × \(\frac{51}{50}\)

                                                                       = $ 1,32,651

Therefore, compound interest $ (1,32,651 - 1,25,000) = $ 7,651.

 

2. Find the compound interest on $10,000 if Ron took loan from a bank for 1 year at 8 % per annum, compounded quarterly.

Solution:

Here, P = principal amount (the initial amount) = $ 10,000

Rate of interest (r) = 8 % per annum

Number of years the amount is deposited or borrowed for (n) = 1 year

Using the compound interest when interest is compounded quarterly formula, we have that

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

   = $ 10,000 (1 + \(\frac{\frac{8}{4}}{100}\))\(^{4 ∙ 1}\)

   = $ 10,000 (1 + \(\frac{2}{100}\))\(^{4}\)

   = $ 10,000 (1 + \(\frac{1}{50}\))\(^{4}\)

   = $ 10,000 × (\(\frac{51}{50}\))\(^{4}\)

   = $ 10,000 × \(\frac{51}{50}\) × \(\frac{51}{50}\) × \(\frac{51}{50}\) × \(\frac{51}{50}\)

   = $ 10824.3216

   = $ 10824.32 (Approx.)

Therefore, compound interest $ (10824.32 - $ 10,000) = $ 824.32


3. Find the amount and the compound interest on $ 1,00,000 compounded quarterly for 9 months at the rate of 4% per annum.

Solution:

Here, P = principal amount (the initial amount) = $ 1,00,000

Rate of interest (r) = 4 % per annum

Number of years the amount is deposited or borrowed for (n) = \(\frac{9}{12}\) year = \(\frac{3}{4}\) year.

Therefore,

The amount of money accumulated after n years (A) = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

                                                                       = $ 1,00,000 (1 + \(\frac{\frac{4}{4}}{100}\))\(^{4 ∙ \frac{3}{4}}\)

                                                                       = $ 1,00,000 (1 + \(\frac{1}{100}\))\(^{3}\)

                                                                       = $ 1,00,000 × (\(\frac{101}{100}\))\(^{3}\)

                                                                       = $ 1,00,000 × \(\frac{101}{100}\) × \(\frac{101}{100}\) × \(\frac{101}{100}\)

                                                                       = $ 103030.10

Therefore, the required amount = $ 103030.10 and compound interest $ ($ 103030.10 - $ 1,00,000) = $ 3030.10

 

4. If $1,500.00 is invested at a compound interest rate 4.3% per annum compounded quarterly for 72 months, find the compound interest.

Solution:

Here, P = principal amount (the initial amount) = $1,500.00

Rate of interest (r) = 4.3 % per annum

Number of years the amount is deposited or borrowed for (n) = \(\frac{72}{12}\) years = 6 years.

A = amount of money accumulated after n years

Using the compound interest when interest is compounded quarterly formula, we have that

A = P(1 + \(\frac{\frac{r}{4}}{100}\))\(^{4n}\)

   = $1,500.00 (1 + \(\frac{\frac{4.3}{4}}{100}\))\(^{4 ∙ 6}\)

   = $1,500.00 (1 + \(\frac{1.075}{100}\))\(^{24}\)

   = $1,500.00 × (1 + 0.01075)\(^{24}\)

   = $1,500.00 × (1.01075)\(^{24}\)

   = $ 1938.83682213

   = $ 1938.84 (Approx.)

Therefore, the compound interest after 6 years is approximately $ (1,938.84 - 1,500.00) = $ 438.84.

Compound Interest

Compound Interest

Compound Interest with Growing Principal

Compound Interest with Periodic Deductions

Compound Interest by Using Formula

Compound Interest when Interest is Compounded Yearly

Compound Interest when Interest is Compounded Half-Yearly

Problems on Compound Interest

Variable Rate of Compound Interest

Practice Test on Compound Interest


Compound Interest - Worksheet

Worksheet on Compound Interest

Worksheet on Compound Interest with Growing Principal

Worksheet on Compound Interest with Periodic Deductions




8th Grade Math Practice 

From Compound Interest when Interest is Compounded Quarterly to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Apr 16, 24 02:19 AM

    Duration of Time
    We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton every evening. Yesterday, their game started at 5 : 15 p.m.

    Read More

  2. Worksheet on Third Grade Geometrical Shapes | Questions on Geometry

    Apr 16, 24 02:00 AM

    Worksheet on Geometrical Shapes
    Practice the math worksheet on third grade geometrical shapes. The questions will help the students to get prepared for the third grade geometry test. 1. Name the types of surfaces that you know. 2. W…

    Read More

  3. 4th Grade Mental Math on Factors and Multiples |Worksheet with Answers

    Apr 16, 24 01:15 AM

    In 4th grade mental math on factors and multiples students can practice different questions on prime numbers, properties of prime numbers, factors, properties of factors, even numbers, odd numbers, pr…

    Read More

  4. Worksheet on Factors and Multiples | Find the Missing Factors | Answer

    Apr 15, 24 11:30 PM

    Worksheet on Factors and Multiples
    Practice the questions given in the worksheet on factors and multiples. 1. Find out the even numbers. 27, 36, 48, 125, 360, 453, 518, 423, 54, 58, 917, 186, 423, 928, 358 2. Find out the odd numbers.

    Read More

  5. Method of L.C.M. | Finding L.C.M. | Smallest Common Multiple | Common

    Apr 15, 24 02:33 PM

    LCM of 24 and 30
    We will discuss here about the method of l.c.m. (least common multiple). Let us consider the numbers 8, 12 and 16. Multiples of 8 are → 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, ......

    Read More