Difference of Compound Interest and Simple Interest

We will discuss here how to find the difference of compound interest and simple interest.

If the rate of interest per annum is the same under both simple interest and compound interest  then for 2 years, compound interest (CI) - simple interest (SI) = Simple interest for 1 year on “Simple interest for one year”.

Compound interest for 2 years – simple interest for two years

= P{(1 + r100)2 - 1} - P×r×2100

= P × r100 × r100

= (P×r100)×r×1100

= Simple interest for 1 year on “Simple interest for 1 year”.

Solve examples on difference of compound interest and simple interest:

1. Find the difference of the compound interest and simple interest on $ 15,000 at the same interest rate of 1212 % per annum for 2 years.

Solution:

In case of Simple Interest:

Here,

P = principal amount (the initial amount) = $ 15,000

Rate of interest (r) = 1212 % per annum = 252 % per annum = 12.5 % per annum

Number of years the amount is deposited or borrowed for (t) = 2 year

Using the simple interest formula, we have that

Interest = P×r×2100

           = $ 15,000×12.5×2100

           = $ 3,750

Therefore, the simple interest for 2 years = $ 3,750

In case of Compound Interest:

Here,

P = principal amount (the initial amount) = $ 15,000

Rate of interest (r) = 1212 % per annum = 252 % per annum = 12.5 % per annum

Number of years the amount is deposited or borrowed for (n) = 2 year

Using the compound interest when interest is compounded annually formula, we have that

A = P(1 + r100)n

A = $ 15,000 (1 + 12.5100)2

   = $ 15,000 (1 + 0.125)2

   = $ 15,000 (1.125)2

   = $ 15,000 × 1.265625

   = $ 18984.375

Therefore, the compound interest for 2 years = $ (18984.375 - 15,000)

                                                             = $ 3,984.375

Thus, the required difference of the compound interest and simple interest = $ 3,984.375 - $ 3,750 = $ 234.375.

2. What is the sum of money on which the difference between simple and compound interest in 2 years is $ 80 at the interest rate of 4% per annum?

Solution:

In case of Simple Interest:

Here,

Let P = principal amount (the initial amount) = $ z

Rate of interest (r) = 4 % per annum

Number of years the amount is deposited or borrowed for (t) = 2 year

Using the simple interest formula, we have that

Interest = P×r×2100

           = $ z×4×2100

           = $ 8z100

           = $ 2z25

Therefore, the simple interest for 2 years = $ 2z25

In case of Compound Interest:

Here,

P = principal amount (the initial amount) = $ x

Rate of interest (r) = 4 % per annum

Number of years the amount is deposited or borrowed for (n) = 2 year

Using the compound interest when interest is compounded annually formula, we have that

A = P(1 + r100)n

A = $ z (1 + 4100)2

   = $ z (1 + 125)2

   = $ z (2625)2

   = $ z × (2625) × (2625)

   = $ (676z625)

So, the compound interest for 2 years = Amount – Principal

                                                    = $ (676z625) - $ z

                                                    = $ (51z625)

Now, according to the problem, the difference between simple and compound interest in 2 years is $ 80

Therefore,

    (51z625) - $ 2z25 = 80

⟹ z(51625 - 225) = 80

z625 = 80

⟹ z = 80 × 625

⟹ z = 50000

Therefore, the required sum of money is $ 50000

Compound Interest

Compound Interest

Compound Interest with Growing Principal

Compound Interest with Periodic Deductions

Compound Interest by Using Formula

Compound Interest when Interest is Compounded Yearly

Compound Interest when Interest is Compounded Half-Yearly

Compound Interest when Interest is Compounded Quarterly

Problems on Compound Interest

Variable Rate of Compound Interest

Practice Test on Compound Interest


Compound Interest - Worksheet

Worksheet on Compound Interest

Worksheet on Compound Interest with Growing Principal

Worksheet on Compound Interest with Periodic Deductions



8th Grade Math Practice 

From Difference of Compound Interest and Simple Interest to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More