Uniform Rate of Depreciation

We will discuss here how to apply the principle of compound interest in the problems of uniform rate of depreciation.

If the rate of decrease is uniform, we denote this as uniform decrease or depreciation.

If the present value P of a quantity decreases at the rate of r% per unit of time then the value Q of the quantity after n units of time is given by

Q = P(1 - \(\frac{r}{100}\))\(^{n}\) and depreciation in value = P - Q = P{1 – (1 - \(\frac{r}{100}\))\(^{n}\)}

If the present population of a car = P, rate of depreciation = r% per annum then the price of the car after n years is Q, where

Q = P(1 - \(\frac{r}{100}\))\(^{n}\) and depreciation = P - Q = P{1 – (1 - \(\frac{r}{100}\))\(^{n}\)}


The fall of efficiency of a machine due to constant use, decrease in valuations of old buildings and furniture, decrease in valuations of the movable properties of the transports, decrease in the number of diseases as a result of alertness come under uniform decrease or depreciation.



Solved examples on the principle of compound interest in the uniform rate of depreciation:

1. The price of a machine depreciates by 10% every year. If the machine is bought for $ 18000 and sold after 3 years, what price will it fetch?

Solution:

The present price of the machine, P = $ 18000, r = 10, n = 3

Q = P(1 - \(\frac{r}{100}\))\(^{n}\)

⟹ Q = 18000(1 - \(\frac{10}{100}\))\(^{3}\)

⟹ Q = 18000(1 - \(\frac{1}{10}\))\(^{3}\)

⟹ Q = 18000(\(\frac{9}{10}\))\(^{3}\)

⟹ Q = 18000 × (\(\frac{9}{10}\)) × (\(\frac{9}{10}\)) × (\(\frac{9}{10}\))

⟹ Q = 18000 × (\(\frac{9 × 9 × 9}{10 × 10 × 10}\))

⟹ Q = 18 × 81 × 9

        = 13122

Therefore, the machine will fetch 13122 after 3 years.

 

2. The value of a machine in a factory depreciates at 10% of its value at the beginning of the year. If its present value be $ 60,000, what will be its estimated value after 3 years?

Solution:

Let the present value of the machine (P) = Rs. 10000, r = 10, n = 3

Q = P(1 - \(\frac{r}{100}\))\(^{n}\)

⟹ Q = 60,000(1 - \(\frac{10}{100}\))\(^{3}\)

⟹ Q = 60,000(1 - \(\frac{1}{10}\))\(^{3}\)

⟹ Q = 60,000(\(\frac{9}{10}\))\(^{3}\)

⟹ Q = 60,000 × (\(\frac{9}{10}\)) × (\(\frac{9}{10}\)) × (\(\frac{9}{10}\))

⟹ Q = 60,000 × (\(\frac{9 × 9 × 9}{10 × 10 × 10}\))

⟹ Q = 43,740

Therefore, the value of the machine will be$ 43,740 after 3 years.


3. The price of a car depreciates by 20% every year. By what percent will the price of the car reduce after 3 years?

Solution:

Let the present price of the car be P. Here, r = 20 and n = 3

Q = P(1 - \(\frac{r}{100}\))\(^{n}\)

⟹ Q = P(1 - \(\frac{20}{100}\))\(^{3}\)

⟹ Q = P(1 - \(\frac{1}{5}\))\(^{3}\)

⟹ Q = P(\(\frac{4}{5}\))\(^{3}\)

⟹ Q = P × (\(\frac{4}{5}\)) × (\(\frac{4}{5}\)) × (\(\frac{4}{5}\))

⟹ Q = (\(\frac{64P}{125}\))

Therefore, the reduced price = (\(\frac{64P}{125}\)); so reduction in price = P - (\(\frac{64P}{125}\)) = (\(\frac{61P}{125}\))

Therefore, the percent reduction in price = (\(\frac{\frac{61P}{125}}{P}\)) × 100% = \(\frac{61}{125}\) × 100% = 48.8%


4. The cost of a school bus depreciates by 10% every year. If its present worth is $ 18,000; what will be its value after three years?

Solution:

The present population P = 18,000,

Rate (r) = 10

Unit of time being year (n) = 3

Now applying the formula of depreciation we get:

Q = P(1 - \(\frac{r}{100}\))\(^{n}\)

⟹ Q = $18,000(1 - \(\frac{10}{100}\))\(^{3}\)

⟹ Q = $18,000(1 - \(\frac{1}{10}\))\(^{3}\)

⟹ Q = $18,000(\(\frac{9}{10}\))\(^{3}\)

⟹ Q = $18,000 × (\(\frac{9}{10}\)) × (\(\frac{9}{10}\)) × (\(\frac{9}{10}\))

⟹ Q = $18,000 × (\(\frac{9 × 9 × 9}{10 × 10 × 10}\))

⟹ Q = $18 × 81 × 9

        = $13,122

Therefore, the value of the school bus will be $ 13,122 after 3 years.

 Compound Interest

Compound Interest

Compound Interest with Growing Principal

Compound Interest with Periodic Deductions

Compound Interest by Using Formula

Compound Interest when Interest is Compounded Yearly

Compound Interest when Interest is Compounded Half-Yearly

Compound Interest when Interest is Compounded Quarterly

Problems on Compound Interest

Variable Rate of Compound Interest

Difference of Compound Interest and Simple Interest

Practice Test on Compound Interest

Uniform Rate of Growth


 Compound Interest - Worksheet

Worksheet on Compound Interest

Worksheet on Compound Interest when Interest is Compounded Half-Yearly

Worksheet on Compound Interest with Growing Principal

Worksheet on Compound Interest with Periodic Deductions

Worksheet on Variable Rate of Compound Interest

Worksheet on Difference of Compound Interest and Simple Interest



8th Grade Math Practice 

From Uniform Rate of Depreciation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheet on Triangle | Homework on Triangle | Different types|Answers

    Jun 21, 24 02:19 AM

    Find the Number of Triangles
    In the worksheet on triangle we will solve 12 different types of questions. 1. Take three non - collinear points L, M, N. Join LM, MN and NL. What figure do you get? Name: (a)The side opposite to ∠L…

    Read More

  2. Worksheet on Circle |Homework on Circle |Questions on Circle |Problems

    Jun 21, 24 01:59 AM

    Circle
    In worksheet on circle we will solve 10 different types of question in circle. 1. The following figure shows a circle with centre O and some line segments drawn in it. Classify the line segments as ra…

    Read More

  3. Circle Math | Parts of a Circle | Terms Related to the Circle | Symbol

    Jun 21, 24 01:30 AM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  4. Circle | Interior and Exterior of a Circle | Radius|Problems on Circle

    Jun 21, 24 01:00 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More

  5. Quadrilateral Worksheet |Different Types of Questions in Quadrilateral

    Jun 19, 24 09:49 AM

    In math practice test on quadrilateral worksheet we will practice different types of questions in quadrilateral. Students can practice the questions of quadrilateral worksheet before the examinations

    Read More