Addition of Integers

We will learn addition of integers using number line.

We know that counting forward means addition.

Having learnt how to add two whole numbers on the number line, we shall extend the same method for addition of integers using the number line. The only difference is the when adding a negative integer, the moves are made to the left.


Working Rules for Addition of Integers:

Step I: Draw a number line and mark points as negative integers.

          i.e., (..., -4, -3, -2, -1,), zero and positive integers i.e., (1, 2, 3, 4, ...)

Step II: For a positive integer move forward and for a negative integer move backward.

Step III: The end is the result.

Addition of Two Positive Integers:

When we add positive integers, we move to the right on the number line.

For example to add +2 and +4 we move 4 steps to the right of +2. 

Addition on Number Line

Thus, +2 +4 = +6.


Addition of Two Negative Integers:

When we add two negative integers, we move to the left on the number line. 

For example to add -2 and -4 we move 4 steps to the left of -2. 

Integer Addition on Number Line

Thus, -2 + (-4) = -6.


Addition of a Negative Integer and a Positive Integer:

When a negative integer is added to a positive integer we move to the left on the number line.

For example to add +2 + (-4), we move 4 steps to the left of +2. 

Adding Integers on Number Line

Thus, +2 + (-4) = -2.


Addition of a Positive Integer and a Negative Integer:

When a positive integer is added to a negative integer we move to the right on the number line.

For example to add (-6) + 3, we move 3 steps to the right of -6.

Addition of Integers

Thus, (-6) + 3 = -3.


We can add two integers having same sings by adding their absolute values and placing the common sign of two integers before it.


Solved Examples on Addition of Integers:

1. Find the value +18 + (+5)

Solution:

Absolute value of |+18| = 18

Absolute value of |+5| = 5

Sum of absolute values = 18 + 5

Since, both integers have common sign +, we place + sign in the answer.

Hence, +18 + (+5) = +23.

We can add two integers having opposite signs by finding difference of their absolute values and placing the sign of the integer with the greater absolute value before it.


2. Find the value -38 + (+28)

Solution:

Absolute value of |-38| = 38

Absolute value of |+28| = 28

Difference of absolute values = 38 – 28 = 10

Placing the sign of the integer with the greater absolute value = -10

Hence, -38 + (+28) = -10.


3. Using the number line, find the following.

(i) 3 + 4

(ii) (-3) + 5

(iii) 3 + (-5)


Solution:

(i) 3 + 4

Start from 3 and proceed 4 units to the right to reach point P. which represents 7.

Addition Using Number Line 3 and 4

Hence, 3 + 4 = 7.


(ii) (-3) + 5

Start from -3 and proceed 5 units to the right to reach point P. which represents 2.

Addition Using Number Line -3 and 5

Hence, (-3) + 5 = 2


(iii) 3 + (-5)

Start from 3 and move 5 units to the left to reach point P, which represents -2.

Addition Using Number Line 3 and -5

Hence  3 + (-5) = -2.


4. Add the following numbers or number line:

(i) 5 and 3

(ii) -2 and -3

(iii) 5 and -3


Solution:

(i) 5 and 3

Addition of Integers 5 and 3

Hence, 5 + 3 = 8


(ii) -2 and -3

Addition of Integers -2 and -3

Hence, -2 + (-3) = -5


(iii) 5 and -3

Addition of Integers 5 and -3

Hence, 5 + (-3) = -5


5. Add 5 and 3 on the number line.

Solution:

On the number line, start from and move 5 units to the right to reach point P. which represents 5.

Now start from P and move 3 units to the right of P to reach point Q.

Add 5 and 3 on the Number Line

Clearly, Q represents 8

Hence, 5 + 3 = 8.


6. Add 7 and -3 on the number line.

Solution:

On the number line, start from 0 and move 7 units to the right to reach point P, which represents 7.

Now start from P and move 3 units to the left of A to reach point Q.

Add 7 and -3 on the Number Line

Clearly, Q represents 4.

Hence, 7 + (-3) = 4.


7. Add -3 and -5 on the number line.

Solution:

On the number line, start from 0 and move 3 units to the left to reach point P, which represents -3. Now start from P and move 5 units to the left of P to reach point Q.

Add -3 and -5 on the Number Line

Clearly, Q represents -8.

Hence, (-3) + (-5) = -8.

You might like these





5th Grade Numbers Page

5th Grade Math Problems

From Addition of Integers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More