Addition of Integers

We will learn addition of integers using number line.

We know that counting forward means addition.

Having learnt how to add two whole numbers on the number line, we shall extend the same method for addition of integers using the number line. The only difference is the when adding a negative integer, the moves are made to the left.


Working Rules for Addition of Integers:

Step I: Draw a number line and mark points as negative integers.

          i.e., (..., -4, -3, -2, -1,), zero and positive integers i.e., (1, 2, 3, 4, ...)

Step II: For a positive integer move forward and for a negative integer move backward.

Step III: The end is the result.

Addition of Two Positive Integers:

When we add positive integers, we move to the right on the number line.

For example to add +2 and +4 we move 4 steps to the right of +2. 

Addition on Number Line

Thus, +2 +4 = +6.


Addition of Two Negative Integers:

When we add two negative integers, we move to the left on the number line. 

For example to add -2 and -4 we move 4 steps to the left of -2. 

Integer Addition on Number Line

Thus, -2 + (-4) = -6.


Addition of a Negative Integer and a Positive Integer:

When a negative integer is added to a positive integer we move to the left on the number line.

For example to add +2 + (-4), we move 4 steps to the left of +2. 

Adding Integers on Number Line

Thus, +2 + (-4) = -2.


Addition of a Positive Integer and a Negative Integer:

When a positive integer is added to a negative integer we move to the right on the number line.

For example to add (-6) + 3, we move 3 steps to the right of -6.

Addition of Integers

Thus, (-6) + 3 = -3.


We can add two integers having same sings by adding their absolute values and placing the common sign of two integers before it.


Solved Examples on Addition of Integers:

1. Find the value +18 + (+5)

Solution:

Absolute value of |+18| = 18

Absolute value of |+5| = 5

Sum of absolute values = 18 + 5

Since, both integers have common sign +, we place + sign in the answer.

Hence, +18 + (+5) = +23.

We can add two integers having opposite signs by finding difference of their absolute values and placing the sign of the integer with the greater absolute value before it.


2. Find the value -38 + (+28)

Solution:

Absolute value of |-38| = 38

Absolute value of |+28| = 28

Difference of absolute values = 38 – 28 = 10

Placing the sign of the integer with the greater absolute value = -10

Hence, -38 + (+28) = -10.


3. Using the number line, find the following.

(i) 3 + 4

(ii) (-3) + 5

(iii) 3 + (-5)


Solution:

(i) 3 + 4

Start from 3 and proceed 4 units to the right to reach point P. which represents 7.

Addition Using Number Line 3 and 4

Hence, 3 + 4 = 7.


(ii) (-3) + 5

Start from -3 and proceed 5 units to the right to reach point P. which represents 2.

Addition Using Number Line -3 and 5

Hence, (-3) + 5 = 2


(iii) 3 + (-5)

Start from 3 and move 5 units to the left to reach point P, which represents -2.

Addition Using Number Line 3 and -5

Hence  3 + (-5) = -2.


4. Add the following numbers or number line:

(i) 5 and 3

(ii) -2 and -3

(iii) 5 and -3


Solution:

(i) 5 and 3

Addition of Integers 5 and 3

Hence, 5 + 3 = 8


(ii) -2 and -3

Addition of Integers -2 and -3

Hence, -2 + (-3) = -5


(iii) 5 and -3

Addition of Integers 5 and -3

Hence, 5 + (-3) = -5


5. Add 5 and 3 on the number line.

Solution:

On the number line, start from and move 5 units to the right to reach point P. which represents 5.

Now start from P and move 3 units to the right of P to reach point Q.

Add 5 and 3 on the Number Line

Clearly, Q represents 8

Hence, 5 + 3 = 8.


6. Add 7 and -3 on the number line.

Solution:

On the number line, start from 0 and move 7 units to the right to reach point P, which represents 7.

Now start from P and move 3 units to the left of A to reach point Q.

Add 7 and -3 on the Number Line

Clearly, Q represents 4.

Hence, 7 + (-3) = 4.


7. Add -3 and -5 on the number line.

Solution:

On the number line, start from 0 and move 3 units to the left to reach point P, which represents -3. Now start from P and move 5 units to the left of P to reach point Q.

Add -3 and -5 on the Number Line

Clearly, Q represents -8.

Hence, (-3) + (-5) = -8.

You might like these





5th Grade Numbers Page

5th Grade Math Problems

From Addition of Integers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Adding 1-Digit Number | Understand the Concept one Digit Number

    Sep 17, 24 02:25 AM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 17, 24 01:47 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 17, 24 12:10 AM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  4. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    Sep 16, 24 11:24 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  5. Worksheet on Tens and Ones | Math Place Value |Tens and Ones Questions

    Sep 16, 24 02:40 PM

    Tens and Ones
    In math place value the worksheet on tens and ones questions are given below so that students can do enough practice which will help the kids to learn further numbers.

    Read More