Loading [MathJax]/jax/output/HTML-CSS/jax.js

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Rationalization of Surds

We will discuss about the rationalization of surds. When the denominator of an expression is a surd which can be reduced to an expression with rational denominator, this process is known as rationalizing the denominator of the surd.

If a surd or surd with rational numbers present in the denominator of an equation, to simplify it or to omit the surds from the denominator, rationalization of surds is used. Surds are irrational numbers but if multiply a surd with a suitable factor, result of multiplication will be rational number. This is the basic principle involved in rationalization of surds. The factor of multiplication by which rationalization is done, is called as rationalizing factor. If the product of two surds is a rational number, then each surd is a rationalizing factor to other. Like if 2 is multiplied with  2, it will 2, which is rational number, so 2 is rationalizing factor of 2.

In other words, the process of reducing a given surd to a rational form after multiplying it by a suitable surd is known as rationalization.

When the product of two surds is a rational number, then each of the two surds is called rationalizing factor of the other.

For example, 52 is a surd where 5 is numerator and 2 is denominator. Now for rationalization of surds, if we multiply both numerator and denominator by 2, then denominator will be a rational number.

52 = 5×22×2 

= 102.

So after rationalization of surd 52, it is becoming 102 where 2 is used as rationalization factor. 

In other words, if the product of two surds is rational, then each is called a rationalizing factor of the other and each is said to be rationalized by the other.

For complex surds where the surds are in order 2, conjugates are used to rationalize the surds. This comes the from the formula a2b2=(a+b)(ab). So in complex surds order 2 surds get squared off and denominators are converted to a rational number.

Like for example, if rationalization of the complex surd 1221 to be done, denominator 221 is to converted to a rational number. If a = 22 and b = 1, then denominator is (a - b), if we multiply (a + b), it will a2b2 and 22 will be squared off.

1221

= (22+1)(221)(22+1)

= (22+1)21

= 22 + 1.

For complex surds in the denominator in other forms or in order more than 2, can be rationalized by using suitable multiplication factors.


Examples of rationalization of surds:

1. For example, the rationalizing factor of √5 is √5 and rationalizing factor of ∛2 is ∛2^2 or ∛4. Since, √5 × √5 = 5 and ∛2 × ∛2^2 = ∛(2 × 2^2) = ∛2^3 = 2

2. (a√z) × (b√z) = (a × b) × (√z × √z) = ab(√z)^2 = abz, which is rational. Therefore, each of the surds a√z and b√z is a rationalizing factor of the other.

3. √5 × 2√5 = 2 × (√5)^2 = 3 × 5 = 15, which is rational. Therefore, each of the surds √5 and 2√5 is a rationalizing factor of the other.

4. (√a + √b) × (√a - √b) = (√a)^2 - (√b)^2 = a - b, which is rational. Therefore, each of the surds (√a + √b)  and (√a - √b) is a rationalizing factor of the other.

5. (x√a + y√b) × (x√a - y√b) = (x√a)^2 - (y√b)^2 = ax - by, which is rational. Therefore, each of the surds (x√a + y√b) and (x√a - y√b) is a rationalizing factor of the other.

6. (4√7 + √3) × (4√7 - √3) = (4√7)^2 - (√3)^2 = 112 - 3 = 109, which is rational. Therefore, each of the surd factors (4√7 + √3) and (4√7 - √3) is a rationalizing factor of the other.

7. Also rationalizing factor of ∛(ab^2c^2) is ∛(a^2bc) because ∛(ab^2c^2) × ∛(a^2bc) = abc.

8. Rationalize the following surds.

2322, 63, 3533

Solution:

2322

= 3×22×2

= 62.

623

= 6×33×3

= 633

= 23.

3533

Here the denominator is 33 or 313, for this surd of order 3, rationalization factor will be 323.

= 35×323313×323

= 35×3323

= 3453.


9. Find the rationalizing factor of (√x - ∛y).

Solution:

Let, √x = x^1/2 = a and ∛y = y^1/3 = b.

Now, the order of the surds √x and ∛y are 2 and 3 respectively and the L.C.M. of 2 and 3 is 6.

Therefore,

a^6 = (x^1/2)^6 = x^3 and b^6 = (y^1/3)^6 = y^2.

Therefore, a^6 and b^6 both are rational and as such (a^6 - b^6) is also rational.

Now, a^6 - b^6 = (a - b)(a^5 + a^4b + a^3b^2 + a^2b^3 + ab^4 + b^5)

Therefore the rationalizing factor of (a - b) = (√x - ∛y) is (a^5 + a^4b + a^3b^2 + a^2b^3 + ab^4 + b^5) = x^5/2 + x^2y^1/3 + x^3/2y^2/3 + xy + x^1/2y^4/3 + y^5/3


10. Rationalize the surd 22+1221.

Solution:

= 22+1221

As the denominator is 221, for rationalization of the surd, we need to multiply both numerator and denominator by the rationalizing factor 22+1.

= (22+1)(22+1)(221)(22+1)

= (22+1)221….. as we know (a+b)(ab)=a2b2

= (22)2+2×22×1+12

= 3+222.


11. Rationalize the surd xxy.

Solution:

xxy

As the denominator is (xy), if x = a and y = b, denominator (a - b) is multiplied with (a + b) or (x+y), it will be rationalized.

= x×(x+y)(xy)(x+y)

= x+xyxy


12. Rationalize the surd 255335.

Solution:

255335

As the denominator is (5335), if 53 = a and 35 = b, denominator (a - b) is multiplied with (a + b) or (53+35), it will be rationalized.

= 25×(53+35)(5335)(53+35)

= 1015+6×5(53)2(35)2

= 1015+3025×39×5

= 1015+307545

= 10(15+3)30

= 3+15

 Surds






11 and 12 Grade Math

From Rationalization of Surds to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More