Simple and Compound Surds

We will discuss about the simple and compound surds.

Definition of Simple Surd:

A surd having a single term only is called a monomial or simple surd. 

Surds which contains only a single term, are called as nominal or simple surds. For example \(\sqrt[2]{2}\), \(\sqrt[2]{5}\),\(\sqrt[2]{7}\), \(5\sqrt[3]{10}\), \(3\sqrt[4]{12}\), \(a\sqrt[n]{x}\) are simple surds.

More example, each of the surds √2, ∛7, ∜6, 7√3, 2√a, 5∛3, m∛n, 5 ∙ 7\(^{3/5}\) etc. is a simple surd.


Definition of Compound Surd:

The algebraic sum of two or more simple surds or the algebraic sum of a rational number and simple surds is called a compound scud. 

The algebraic sum of two or more simple surds or the algebraic sum of rational numbers and simple surds are called as binominal surds or compound surds. For example \(2+\sqrt[2]{3}\) is a sum of one rational number 2 and one simple surd \(\sqrt[2]{3}\), so this is a compound surd. \(\sqrt[2]{2} + \sqrt[2]{3}\) is a sum of two simple surds \(\sqrt[2]{2}\) and \(\sqrt[2]{3}\), so this is also a example of compound surd. Some other examples of compound surds are \(\sqrt[2]{5} -\sqrt[2]{7}\), \(\sqrt[3]{10} + \sqrt[3]{12}\), \(\sqrt[2]{x} + \sqrt[2]{y}\)

More example, each of the surds (√5 + √7), (√5 - √7), (5√8 - ∛7), (∜6 + 9), (∛7 + ∜6), (x∛y - b)  is a compound surd. 

Note: The compound surd is also known as binomial surd. That is, the algebraic sum of two surds or a surd and a rational number is called a binomial surd. 

For example, each of the surds (√5 + 2), (5 - ∜6), (√2 + ∛7) etc. is a binomial surd.


Problems on Simple Surds:

1. Arrange the following simple surds descending order.

\(\sqrt[2]{3}\), \(\sqrt[3]{9}\),\(\sqrt[4]{60}\)

Solution:

The given surds are \(\sqrt[2]{3}\), \(\sqrt[3]{5}\), \(\sqrt[4]{12}\).

The surds are in the order of 2, 3, and 4 respectively. If we need to compare their values, we need to express them in same order. As the LCM of 2, 3, and 4 is 12, we should express the surds in order 12.

\(\sqrt[2]{3}\) = \(3^{\frac{1}{2}}\) = \(3^{\frac{6}{12}}\)= \(729^{\frac{1}{12}}\) = \(\sqrt[12]{729}\)

\(\sqrt[3]{5}\) = \(5^{\frac{1}{3}}\) = \(5^{\frac{4}{12}}\)= \(625^{\frac{1}{12}}\) = \(\sqrt[12]{625}\)

\(\sqrt[4]{12}\) = \(12^{\frac{1}{4}}\) = \(12^{\frac{3}{12}}\) = \(1728^{\frac{1}{12}}\) = \(\sqrt[12]{1728}\)

Hence the descending order of the given surds is \(\sqrt[4]{12}\), \(\sqrt[2]{3}\), \(\sqrt[3]{5}\).


2. Arrange the following simple surds descending order.

\(2\sqrt[2]{10}\), \(4\sqrt[2]{7}\), \(5\sqrt[2]{3}\)

Solution:

If we need to compare the values of the given simple surds, we have to express them in the form of pure surds. As the orders of all three surds are same we don’t need change the order.

\(2\sqrt[2]{10}\) = \(\sqrt[2]{2^{2}\times 10}\) = \(\sqrt[2]{4\times 10}\) = \(\sqrt[2]{40}\)

\(4\sqrt[2]{7}\) = \(\sqrt[2]{4^{2}\times 7}\) = \(\sqrt[2]{16\times 7}\) = \(\sqrt[2]{112}\)

\(5\sqrt[2]{3}\) = \(\sqrt[2]{5^{2}\times 3}\) = \(\sqrt[2]{25\times 3}\)= \(\sqrt[2]{75}\)

Hence the descending order of the given surds is \(4\sqrt[2]{7}\), \(5\sqrt[2]{3}\), \(2\sqrt[2]{10}\).

Problems on Compound Surds:

1. If x = \(1+\sqrt[2]{2}\), then what is the value of \(x^{2} - \frac{1}{x^{2}}\)?

Solution:

Given x = \(1+\sqrt[2]{2}\)

We need find out 

\(x^{2}-\frac{1}{x^{2}}\)

= \(x^{2}-(\frac{1}{x})^{2}\)

As we know \(a^{2}-b^{2} = (a + b)(a - b)\)

We can write \(x^{2} - (\frac{1}{x})^{2}\) as

= \((x + \frac{1}{x})(x - \frac{1}{x})\)

Now we will find out separately the values of  \(x+\frac{1}{x}\) and  \(x-\frac{1}{x}\)

\(x+\frac{1}{x}\)

= \(1+\sqrt[2]{2}\)+\(\frac{1}{1+\sqrt{2}}\)

= \(\frac{(1+\sqrt{2})^{2}+1}{1+\sqrt{2}}\)

=\(\frac{1+2+2\sqrt{2}+1}{1+\sqrt{2}}\)

=\(\frac{4+2\sqrt{2}}{1+\sqrt{2}}\)

=\(\frac{2\sqrt{2}(1+\sqrt{2})}{1+\sqrt{2}}\)

=\(2\sqrt{2}\)\(x-\frac{1}{x}\)

=\(1+\sqrt[2]{2}\)-\(\frac{1}{1+\sqrt{2}}\)

=\(\frac{(1+\sqrt{2})^{2}-1}{1+\sqrt{2}}\)

=\(\frac{1+2+2\sqrt{2}-1}{1+\sqrt{2}}\)

=\(\frac{3+2\sqrt{2}}{1+\sqrt{2}}\)

So \(x^{2} - \frac{1}{x^{2}}\)

=\((x+\frac{1}{x})\cdot (x-\frac{1}{x})\)

=\((2\sqrt{2})(\frac{3+2\sqrt{2}}{1+\sqrt{2}})\)

=\(\frac{6\sqrt{3}+8}{1+\sqrt{2}}\)

=\(\frac{2(3\sqrt{3}+4)}{1+\sqrt{2}}\)


2. If x= \(\sqrt{2}+\sqrt{3}\) and y = \(\sqrt{2}-\sqrt{3}\) then what is the value of \(x^{2}- y^{2}\)?

Solution:

As we know \(a^{2}-b^{2} = (a+ b)(a - b)\)

\(x^{2}- y^{2}\)

= \((x+y)(x-y)\)

Now we will find out separately the values of (x + y) and (x - y).

   (x + y)

= \(\sqrt{2}+\sqrt{3}\) + \(\sqrt{2}-\sqrt{3}\)

= \(2\sqrt{2}\)(x - y)

= \(\sqrt{2} + \sqrt{3}\)-\(\sqrt{2} - \sqrt{3}\)

= \(2\sqrt{3}\)

So \(x^{2}- y^{2}\)

= \(2\sqrt{2}\times2\sqrt{3}\)

=\(4\sqrt{6}\)





11 and 12 Grade Math

From Simple and Compound Surds to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  2. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  3. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More

  4. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Apr 26, 25 03:48 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More

  5. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Apr 26, 25 01:00 PM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More