Order of a Surd

The order of a surd indicates the index of root to be extracted.

In \(\sqrt[n]{a}\), n is called the order of the surd and a is called the radicand.

For example: The order of the surd \(\sqrt[5]{z}\) is 5.

(i) A surd with index of root 2 is called a second order surd or quadratic surd.

The surds which have the indices of root 2 are called as second order surds or quadratic surds. For example√2, √3, √5, √7, √x are the surds of order 2.

Example: √2, √5, √10, √a, √m, √x, √(x + 1) are second order surd or quadratic surd (since the indices of roots are 2).

(ii) A surd with index of root 3 is called a third order surd or cubic surd.

If x is a positive integer with nth root, then  is a surd of nth order when the value of  is irrational. In  expression n is the order of surd and x is called as radicand. For example  is surd of order 3.

The surds which have the indices of cube roots are called as third order surds or cubic surds. For example ∛2, ∛3, ∛10, ∛17, ∛x are the surds of order 3 or cubic surds.

Example: ∛2, ∛5, ∛7, ∛15, ∛100, ∛a, ∛m, ∛x, ∛(x - 1) are third order surd or cubic surd (since the indices of roots are 3).


(iii) A surd with index of root 4 is called a fourth order surd.

The surds which have the indices of four roots are called as forth order surds or bi-quadratic surds.

For example ∜2, ∜4, ∜9, ∜20, ∜x are the surds of order 4.

Example: \(\sqrt[4]{2}\), \(\sqrt[4]{3}\), \(\sqrt[4]{9}\), \(\sqrt[4]{17}\), \(\sqrt[4]{70}\), \(\sqrt[4]{a}\), \(\sqrt[4]{m}\), \(\sqrt[4]{x}\), \(\sqrt[4]{x - 1}\) are third order surd or cubic surd (since the indices of roots are 4).


(iv) In general, a surd with index of root n is called a n\(^{th}\) order surd.

Similarly the surds which have the indices of n roots are nth order surds. \(\sqrt[n]{2}\), \(\sqrt[n]{17}\), \(\sqrt[n]{19}\), \(\sqrt[n]{x}\) are the surds of order n.

Example: \(\sqrt[n]{2}\), \(\sqrt[n]{3}\), \(\sqrt[n]{9}\), \(\sqrt[n]{17}\), \(\sqrt[n]{70}\), \(\sqrt[n]{a}\), \(\sqrt[n]{m}\), \(\sqrt[n]{x}\), \(\sqrt[n]{x - 1}\) are nth order surd (since the indices of roots are n).


Problem on finding the order of a surd:

Express ∛4 as a surd of order 12.

Solution:

Now, ∛4

= 4\(^{1/3}\)

= \(4^{\frac{1 × 4}{3 × 4}}\), [Since, we are to convert order 3 into 12, so we multiply both numerator and denominator of 1/3 by 4]

= 4\(^{4/12}\)

= \(\sqrt[12]{4^{4}}\)

= \(\sqrt[12]{256}\)


Problems on finding the order of surds:

1. Express √2 as a surd of order 6.

Solution:

√2 = 2\(^{1/2}\)

     = \(2^{\frac{1 × 3}{2 × 3}}\)

     = \(2^{\frac{3}{6}}\)

     = 8\(^{1/6}\)

     = \(\sqrt[6]{8}\)

So \(\sqrt[6]{8}\) is a surd of order 6.


2. Express ∛3 as a surd of order 9.

Solution:

∛3 = 3\(^{1/3}\)

     = \(3^{\frac{1 × 3}{3 × 3}}\)

     = \(3^{\frac{3}{9}}\)

     = 27\(^{1/9}\)

     = \(\sqrt[9]{27}\)

So \(\sqrt[9]{27}\) is a surd of order 9.


3. Simplify the surd  ∜25 to a quadratic surd.

Solution:

 ∜25 = 25\(^{1/4}\)

= \(5^{\frac{2 × 1}{4}}\)

= \(3^{\frac{1}{2}}\)

= \(\sqrt[2]{5}\)

= √5

So √5 is a surd of order 2 or a quadratic surd.














11 and 12 Grade Math

From Order of a Surd to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Multiplying 2-Digit Number by 1-Digit Number | Multiply Two-Digit Numb

    Oct 21, 24 03:38 PM

    Multiplying 2-Digit Number by 1-Digit Number
    Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. Examples of multiplying 2-digit number by

    Read More

  2. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Oct 21, 24 02:26 AM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More

  3. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Oct 21, 24 02:16 AM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  4. Concept of Multiplication | What is Multiplication? | Basics Math

    Oct 21, 24 01:05 AM

    Multiplication Fact 8 × 2
    Multiplication is repeated addition of a number to itself. Study the following example to understand it: Example: Take 3 groups of 2 pens each as shown below. How many pens are there in all?

    Read More

  5. Properties of Multiplication | Multiplicative Identity | Whole Numbers

    Oct 21, 24 12:50 AM

    Properties of Multiplication of Whole Numbers
    There are six properties of multiplication of whole numbers that will help to solve the problems easily. The six properties of multiplication are Closure Property, Commutative Property, Zero Property…

    Read More