Order of a Surd

The order of a surd indicates the index of root to be extracted.

In \(\sqrt[n]{a}\), n is called the order of the surd and a is called the radicand.

For example: The order of the surd \(\sqrt[5]{z}\) is 5.

(i) A surd with index of root 2 is called a second order surd or quadratic surd.

The surds which have the indices of root 2 are called as second order surds or quadratic surds. For example√2, √3, √5, √7, √x are the surds of order 2.

Example: √2, √5, √10, √a, √m, √x, √(x + 1) are second order surd or quadratic surd (since the indices of roots are 2).

(ii) A surd with index of root 3 is called a third order surd or cubic surd.

If x is a positive integer with nth root, then  is a surd of nth order when the value of  is irrational. In  expression n is the order of surd and x is called as radicand. For example  is surd of order 3.

The surds which have the indices of cube roots are called as third order surds or cubic surds. For example ∛2, ∛3, ∛10, ∛17, ∛x are the surds of order 3 or cubic surds.

Example: ∛2, ∛5, ∛7, ∛15, ∛100, ∛a, ∛m, ∛x, ∛(x - 1) are third order surd or cubic surd (since the indices of roots are 3).


(iii) A surd with index of root 4 is called a fourth order surd.

The surds which have the indices of four roots are called as forth order surds or bi-quadratic surds.

For example ∜2, ∜4, ∜9, ∜20, ∜x are the surds of order 4.

Example: \(\sqrt[4]{2}\), \(\sqrt[4]{3}\), \(\sqrt[4]{9}\), \(\sqrt[4]{17}\), \(\sqrt[4]{70}\), \(\sqrt[4]{a}\), \(\sqrt[4]{m}\), \(\sqrt[4]{x}\), \(\sqrt[4]{x - 1}\) are third order surd or cubic surd (since the indices of roots are 4).


(iv) In general, a surd with index of root n is called a n\(^{th}\) order surd.

Similarly the surds which have the indices of n roots are nth order surds. \(\sqrt[n]{2}\), \(\sqrt[n]{17}\), \(\sqrt[n]{19}\), \(\sqrt[n]{x}\) are the surds of order n.

Example: \(\sqrt[n]{2}\), \(\sqrt[n]{3}\), \(\sqrt[n]{9}\), \(\sqrt[n]{17}\), \(\sqrt[n]{70}\), \(\sqrt[n]{a}\), \(\sqrt[n]{m}\), \(\sqrt[n]{x}\), \(\sqrt[n]{x - 1}\) are nth order surd (since the indices of roots are n).


Problem on finding the order of a surd:

Express ∛4 as a surd of order 12.

Solution:

Now, ∛4

= 4\(^{1/3}\)

= \(4^{\frac{1 × 4}{3 × 4}}\), [Since, we are to convert order 3 into 12, so we multiply both numerator and denominator of 1/3 by 4]

= 4\(^{4/12}\)

= \(\sqrt[12]{4^{4}}\)

= \(\sqrt[12]{256}\)


Problems on finding the order of surds:

1. Express √2 as a surd of order 6.

Solution:

√2 = 2\(^{1/2}\)

     = \(2^{\frac{1 × 3}{2 × 3}}\)

     = \(2^{\frac{3}{6}}\)

     = 8\(^{1/6}\)

     = \(\sqrt[6]{8}\)

So \(\sqrt[6]{8}\) is a surd of order 6.


2. Express ∛3 as a surd of order 9.

Solution:

∛3 = 3\(^{1/3}\)

     = \(3^{\frac{1 × 3}{3 × 3}}\)

     = \(3^{\frac{3}{9}}\)

     = 27\(^{1/9}\)

     = \(\sqrt[9]{27}\)

So \(\sqrt[9]{27}\) is a surd of order 9.


3. Simplify the surd  ∜25 to a quadratic surd.

Solution:

 ∜25 = 25\(^{1/4}\)

= \(5^{\frac{2 × 1}{4}}\)

= \(3^{\frac{1}{2}}\)

= \(\sqrt[2]{5}\)

= √5

So √5 is a surd of order 2 or a quadratic surd.














11 and 12 Grade Math

From Order of a Surd to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of Decimals | Subtracting Decimals | Decimal Subtraction

    Apr 17, 25 01:54 PM

    We will discuss here about the subtraction of decimals. Decimals are subtracted in the same way as we subtract ordinary numbers. We arrange the digits in columns

    Read More

  2. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 17, 25 01:17 PM

    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  3. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Apr 17, 25 12:21 PM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  4. Math Place Value | Place Value | Place Value Chart | Ones and Tens

    Apr 16, 25 03:10 PM

    0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are one-digit numbers. Numbers from 10 to 99 are two-digit numbers. Let us look at the digit 6 in the number 64. It is in the tens place of the number. 6 tens = 60 So…

    Read More

  5. Place Value and Face Value | Place and Face Value of Larger Number

    Apr 16, 25 02:55 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More