Equiradical Surds

If two or more surds are of the same order they are said to be equiradical.

Surds are not equiradical when their surd indices are different.

Thus, √5, √7, 2√5, √x and 10^1/2 are equiradical surds.

But √2, ∛7, ∜6 and 9^2/5 are not equiradical.

Note: Non-equiradical surds can be reduced to equiradical surds.

Thus, non-equiradical surds √3, ∛3, ∜3 become \(\sqrt[12]{729}\), \(\sqrt[12]{81}\), \(\sqrt[12]{27}\) respectively when they are reduced to equiradical surds.

If x is a positive integer with nth root, then \(\sqrt[n]{x}\) is a surd of nth order when the value of \(\sqrt[n]{x}\)  is irrational. In \(\sqrt[n]{x}\)  expression n is the order of surd and x is called as radicand. For example ∛7 is surd of order 3.

When two or more surds have the same order, they called as Equiradical Surds. For example √2, √3, √5, √7, √x are the surds of order 2. So these surds are equiradical.

When two or more surds don’t have the same order they are called non-equiradical surds. For example√5, √7, ∛10, ∛17, ∜9, ∜20 these surds are non-equiradical surds as they have different orders as 2,3 and 4. 

Non-equiradical surds can be expressed in the form of equiradical surds. For example √2, ∛3 and ∜5 are non-equiradical surds with order 2,3 and 4. If we can change the indices of surds such that all the surds  can be converted in to a same order, then non-equiradical surds can be expressed in the form of equiradical surds. For this case with orders of 2, 3, 4 we can change surds in the a same order if we change it to the LCM (Lowest Common Multiple) of order and that is 12.

Changing the order of first surd from 2 to 12, √2 = 2\(^{1/2}\) = 2\(^{6/123}\) = 64\(^{1/12}\) = \(\sqrt[12]{64}\)

Changing the order of second surd from 3 to 12, ∛3 = 3\(^{1/3}\) = 3 \(^{4/12}\) = 81\(^{1/12}\) = \(\sqrt[12]{81}\)

Changing the order of third surd from 4 to 12, ∜5 = 5\(^{1/4}\) = 5\(^{3/12}\) = 125\(^{1/12}\) = \(\sqrt[12]{125}\)

So √2, ∛3 and ∜5 are the non-equiradical surds which can be expressed in the form of equiradical surds as \(\sqrt[12]{64}\), \(\sqrt[12]{81}\), \(\sqrt[12]{125}\)

In two equiradical surds \(\sqrt[n]{x}\) and \(\sqrt[n]{y}\)\(\sqrt[n]{x}\) > \(\sqrt[n]{y}\) when x > y.  For example ∛7 and ∛5 are the two equiradical surds, as 7 > 5, so ∛7 > ∛5. The same comparison can done for more than two equiradical surds also. 

For non-equiradical surds if we change it to the form of equiradical surds, then similarly we can compare the values of surds like it is compared for the case of two equiradical numbers. For example ∛7 and ∜5 are two non-equiradical surds. If we need find out ∛7 > ∜5 or ∜5 > ∛7, then we first need to express the surds in to equiradical surds. As the orders of the surds are 3 and 4, LCM of 3 and 4 is 12, so if we make the surds in order 12 we can find out which one is greater value.

∛7 = 7\(^{1/3}\) = 7\(^{4/12}\) = 2401\(^{1/12}\) = \(\sqrt[12]{2401}\)

∜5 = 5\(^{1/4}\) = 5\(^{3/12}\) = 125\(^{1/12}\) = \(\sqrt[12]{125}\)

As 2401 > 125, so ∛7 > ∜5.


Solved Example:

Arrange the surds in descending order.

√10, ∛25, ∜40

Solution:

√10, ∛25, ∜40

Surds are in the order of 2, 3, and 4. So the surds are non-equiradical surds. To arrange the surds in descending order, the surds need to be expressed in the form of equiradical surds. As the LCM of 2, 3 and 4 is 12, so the order of the equiradical surds will be 12.

√10 = 10\(^{1/2}\) = 10\(^{6/12}\) = 1000000\(^{1/12}\)

 = \(\sqrt[12]{1000000}\)

∛25 = 25\(^{1/3}\) = 25\(^{4/12}\) = 390625\(^{1/12}\) = \(\sqrt[12]{390625}\)

∜40 = 40\(^{1/4}\) = 40\(^{3/12}\) = 64000\(^{1/12}\)

= \(\sqrt[12]{64000}\)

As 1000000 > 390625 > 64000, the ascending order will be √10, ∛25, ∜40.




11 and 12 Grade Math

From Equiradical Surds to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

    Mar 02, 24 05:31 PM

    Fractions
    The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerato…

    Read More

  2. Subtraction of Fractions having the Same Denominator | Like Fractions

    Mar 02, 24 04:36 PM

    Subtraction of Fractions having the Same Denominator
    To find the difference between like fractions we subtract the smaller numerator from the greater numerator. In subtraction of fractions having the same denominator, we just need to subtract the numera…

    Read More

  3. Addition of Like Fractions | Examples | Worksheet | Answer | Fractions

    Mar 02, 24 03:32 PM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More

  4. Comparison of Unlike Fractions | Compare Unlike Fractions | Examples

    Mar 01, 24 01:42 PM

    Comparison of Unlike Fractions
    In comparison of unlike fractions, we change the unlike fractions to like fractions and then compare. To compare two fractions with different numerators and different denominators, we multiply by a nu…

    Read More

  5. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 29, 24 05:12 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More