Properties of Surds

We will discuss about the different properties of surds.

If a and b are both rationals and √x and √y are both surds and a + √x = b + √y then a = b and x = y

If a not equal to b, let us assume, b = a + m, where m (m ≠ 0) is a rational.

Now, by question, a + √x = b + √y

⇒ a + √x = a + m + √y  

⇒ √x = m + √y, which is impossible (since a simple quadratic surd cannot be equal to the sum of a rational quantity and a simple quadratic surd).

Therefore, we must have, a = b.

When a = b then a + √x = b + √y ⇒ √x = √y ⇒ x = y.

Notes:

1. If a - √x = b - √y where a, b are both rationals and √x, √y are both surds, then proceeding as above we can show a = b and x = y.

2. If √x and √y are actually rationals (in the form of surds), then the relation a + √x = b + √y does not imply a = b and x = y.

 For example, we have,

10 = 6 + 4 = 6 + √16 and 10 = 4 + 6 = 4 + √36

⇒ 6 + √16 = 4 + √36

Evidently we cannot have, 6 = 4 or 16 = 36.

This is due to the fact that √16 and √36 are not surds, they represent rational numbers.


3. If a + √x = b + √y where a, b are both rationals and √x, √y are both surds then, a = b i.e. rational parts of two sides are equal and x = y i.e., irrational parts of two sides are equal.

4. If a - √x = b - √y where a, b are both rationals and √x, √y are both surds then, a = b i.e. rational parts of two sides are equal and x = y i.e., irrational parts of two sides are equal.

5. If a + √x = 0, then a = 0 and x = 0.

6. If a - √x = 0, then a = 0 and x = 0.

7. If a + √x = b + √y then, a - √x = b - √y

8. If √(a + √x) = √b + √y then √(a - √x) = √b - √y

9. Identically, if √(a - √x) = √b - √y then √(a - √x) = √b - √y.





11 and 12 Grade Math

From Properties of Surds to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Adding 1-Digit Number | Understand the Concept one Digit Number

    Sep 17, 24 02:25 AM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 17, 24 01:47 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 17, 24 12:10 AM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  4. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    Sep 16, 24 11:24 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  5. Worksheet on Tens and Ones | Math Place Value |Tens and Ones Questions

    Sep 16, 24 02:40 PM

    Tens and Ones
    In math place value the worksheet on tens and ones questions are given below so that students can do enough practice which will help the kids to learn further numbers.

    Read More