The product of two unlike quadratic surds cannot be rational.

Suppose, let √p and √q be two unlike quadratic surds.

We have to show that √p ∙ √q cannot be rational.

If possible, let us assume, √p ∙ √q = r where r is rational.

Therefore, √q = r/√p = (r ∙ √p)/(√p ∙ √p) = (r /p) √p

√q = (a rational quantity) √p, [Since, r and p both are rational, therefore, r/p is rational.)

Now from the above expression we clearly see that √p and √q are like surds, which is a contradiction. Therefore, our assumption cannot hold i.e., √p ∙ √q cannot be rational.

Therefore, the product of two unlike quadratic surds cannot be rational.

**Notes:**

**1.** In like manner we can show that the quotient of two
unlike quadratic surds cannot be rational.

**2.** The product of two like quadratic surds always
represent a rational quantity.

For example, consider two like quadratic surds m√z and n√z where m and n are rational.

Now the product of m√z and n√z = m√z ∙ n√z = mn(√z^2)= mnz, which is a rational quantity.

**3.** The quotient of two like quadratic surds always
represent a rational quantity. For example, consider For example, consider two
like quadratic surds m√z and n√z where m and n are rational.

Now the quotient of m√z and n√z = (m√z)/(n√z) = m/n, which is a rational quantity.

**11 and 12 Grade Math**

**From Product of two unlike Quadratic Surds to HOME PAGE**

**Didn't find what you were looking for? Or want to know more information
about Math Only Math.
Use this Google Search to find what you need.**

## New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.