Subscribe to our YouTube channel for the latest videos, updates, and tips.


Addition and Subtraction of Surds

In addition and subtraction of surds we will learn how to find the sum or difference of two or more surds only when they are in the simplest form of like surds.

For addition and subtraction of surds, we have to check the surds that if they are similar surds or dissimilar surds.

Follow the following steps to find the addition and subtraction of two or more surds:

Step I: Convert each surd in its simplest mixed form.

Step II: Then find the sum or difference of rational co-efficient of like surds.

Step III: Finally, to get the required sum or difference of like surds multiply the result obtained in step II by the surd-factor of like surds.

Step IV: The sum or difference of unlike surds is expressed in a number of terms by connecting them with positive sign (+) or negative (-) sign.

If the surds are similar, then we can sum or subtract rational coefficients to find out the result of addition or subtraction.

\(a\sqrt[n]{x}\pm b\sqrt[n]{x} = (a\pm b)\sqrt[n]{x}\)

The above equation shows the rule of addition and subtraction of surds where irrational factor is \(\sqrt[n]{x}\) and a, b are rational coefficients.

Surds firstly need to be expressed in their simplest form or lowest order with minimum radicand, and then only we can find out which surds are similar. If the surds are similar, we can add or subtract them according to the rule mentioned above.

For example we need to find the addition of \(\sqrt[2]{8}\), \(\sqrt[2]{18}\).

Both surds are in same order. Now we need find express them in their simplest form.

So \(\sqrt[2]{8}\) = \(\sqrt[2]{4\times 2}\) = \(\sqrt[2]{2^{2}\times 2}\) = \(2\sqrt[2]{2}\)

And \(\sqrt[2]{18}\) = \(\sqrt[2]{9\times 2}\) = \(\sqrt[2]{3^{2}\times 2}\) = \(3\sqrt[2]{2}\).

As both surds are similar, we can add their rational co-efficient and find the result. 

Now \(\sqrt[2]{8}\) + \(\sqrt[2]{18}\) = \(2\sqrt[2]{2}\) + \(3\sqrt[2]{2}\) = \(5\sqrt[2]{2}\).

Similarly we will find out subtraction of \(\sqrt[2]{75}\), \(\sqrt[2]{48}\).

\(\sqrt[2]{75}\)= \(\sqrt[2]{25\times 3}\)= \(\sqrt[2]{5^{2}\times 3}\)= \(5\sqrt[2]{3}\)

\(\sqrt[2]{48}\) = \(\sqrt[2]{16\times 3}\) = \(\sqrt[2]{4^{2}\times 3}\)= \(4\sqrt[2]{3}\)

So \(\sqrt[2]{75}\) - \(\sqrt[2]{48}\) = \(5\sqrt[2]{3}\) - \(4\sqrt[2]{3}\) = \(\sqrt[2]{3}\).

But if we need to find out the addition or subtraction of \(3\sqrt[2]{2}\) and \(2\sqrt[2]{3}\), we can only write it as \(3\sqrt[2]{2}\) + \(2\sqrt[2]{3}\) or \(3\sqrt[2]{2}\) - \(2\sqrt[2]{3}\). As the surds are dissimilar, further addition and subtraction are not possible in surd forms.

Examples of Addition and Subtraction of Surds:

1. Find the sum of √12 and √27.

Solution:

Sum of √12 and √27

= √12 + √27

Step I: Express each surd in its simplest mixed form;

= \(\sqrt{2\cdot 2\cdot 3}\) + \(\sqrt{3\cdot 3\cdot 3}\)

= 2√3 + 3√3

Step II: Then find the sum of rational co-efficient of like surds.

= 5√3


2. Simplify \(3\sqrt[2]{32}\) + \(6\sqrt[2]{45}\) - \(\sqrt[2]{162}\) - \(2\sqrt[2]{245}\).

Solution:

\(3\sqrt[2]{32}\) + \(6\sqrt[2]{45}\) - \(\sqrt[2]{162}\) - \(2\sqrt[2]{245}\)

= \(3\sqrt[2]{16\times 2}\) + \(6\sqrt[2]{9\times 5}\) - \(\sqrt[2]{81\times 2}\) - \(2\sqrt[2]{49\times 5}\)

= \(3\sqrt[2]{4^{2}\times 2}\) + \(6\sqrt[2]{3^{2}\times 5}\) - \(\sqrt[2]{9^{2}\times 2}\) - \(2\sqrt[2]{7^{2}\times 5}\)

= \(12\sqrt[2]{2}\) + \(18\sqrt[2]{5}\) - \(9\sqrt[2]{2}\) - \(14\sqrt[2]{5}\)

= \(3\sqrt[2]{2}\) + \(4\sqrt[2]{5}\)


3. Subtract 2√45 from 4√20.

Solution:

Subtract 2√45 from 4√20

= 4√20 - 2√45

Now convert each surd in its simplest form

= 4\(\sqrt{2\cdot 2\cdot 5}\) - 2\(\sqrt{3\cdot 3\cdot 5}\)

= 8√5 - 6√5

Clearly, we see that 8√5 and 6√5 are like surds.

Now find the difference of rational co-efficient of like surds

= 2√5.


4. Simplify \(7\sqrt[3]{128}\) + \(5\sqrt[3]{375}\) - \(2\sqrt[3]{54}\) - \(2\sqrt[3]{1029}\).

Solution:

\(7\sqrt[3]{128}\) + \(5\sqrt[3]{375}\) - \(2\sqrt[3]{54}\) - \(2\sqrt[3]{1029}\)

= \(7\sqrt[3]{64\times 2}\) + \(5\sqrt[3]{125\times 3}\) - \(\sqrt[3]{27\times 2}\) - \(2\sqrt[3]{343\times 3}\)

= \(7\sqrt[3]{4^{3}\times 2}\) + \(5\sqrt[3]{5^{3}\times 3}\) - \(\sqrt[3]{3^{3}\times 2}\) - \(2\sqrt[3]{7^{3}\times 3}\)

= \(28\sqrt[3]{2}\) + \(25\sqrt[3]{3}\) - \(3\sqrt[3]{2}\) - \(14\sqrt[3]{3}\)

= \(25\sqrt[3]{2}\) + \(11\sqrt[3]{3}\).


5. Simplify: 5√8 - √2 + 5√50 - 2\(^{5/2}\)

Solution:

5√8 - √2 + 5√50 - 2\(^{5/2}\)

Now convert each surd in its simplest form

= 5\(\sqrt{2\cdot 2\cdot 2}\) - √2 + 5\(\sqrt{2\cdot 5\cdot 5}\) - \(\sqrt{2^{5}}\)

= 5\(\sqrt{2\cdot 2\cdot 2}\) - √2 + 5\(\sqrt{2\cdot 5\cdot 5}\) - \(\sqrt{2\cdot 2\cdot 2\cdot 2\cdot 2}\)

= 10√2 - √2 + 25√2 - 4√2

Clearly, we see that 8√5 and 6√5 are like surds.

Now find the sum and difference of rational co-efficient of like surds

= 30√2


6. Simplify \(24\sqrt[3]{3}\) + \(5\sqrt[3]{24}\) - \(2\sqrt[2]{28}\) - \(4\sqrt[2]{63}\).

Solution:

\(24\sqrt[3]{3}\) + \(5\sqrt[3]{24}\) - \(2\sqrt[2]{28}\) - \(4\sqrt[2]{63}\)

= \(24\sqrt[3]{3}\) + \(5\sqrt[3]{8\times 3}\) - \(2\sqrt[2]{4\times 7}\) - \(4\sqrt[2]{9\times 7}\)

=  \(24\sqrt[3]{3}\) + \(5\sqrt[3]{2^{3}\times 3}\) - \(2\sqrt[2]{2^{2}\times 7}\) - \(4\sqrt[2]{3^{2}\times 7}\)

= \(24\sqrt[3]{3}\) + \(10\sqrt[3]{3}\) - \(4\sqrt[2]{7}\) - \(12\sqrt[2]{7}\)

= \(34\sqrt[3]{3}\) - \(16\sqrt[2]{7}\).


7. Simplify: 2∛5 - ∛54 + 3∛16 - ∛625

Solution:

2∛5 - ∛54 + 3∛16 - ∛625

Now convert each surd in its simplest form

= 2∛5 - \(\sqrt[3]{2\cdot 3\cdot 3\cdot 3}\) + 3\(\sqrt[3]{2\cdot 2\cdot 2\cdot 2}\) - \(\sqrt[3]{5\cdot 5\cdot 5\cdot 5}\)

= 2∛5 - 3∛2 + 6∛2 - 5∛5

= (6∛2 - 3∛2) + (2∛5 - 5∛5), [Combining the like surds]

Now find the difference of rational co-efficient of like surds

= 3∛2 - 3∛5


8. Simplify \(5\sqrt[2]{7}\) + \(3\sqrt[2]{20}\) - \(2\sqrt[2]{80}\) - \(3\sqrt[2]{84}\).

Solution:

\(5\sqrt[2]{7}\) + \(3\sqrt[2]{20}\) - \(2\sqrt[2]{80}\) - \(3\sqrt[2]{84}\)

= \(5\sqrt[2]{7}\) + \(3\sqrt[2]{4\times 5}\) - \(2\sqrt[2]{16\times 5}\) - \(3\sqrt[2]{16\times 6}\)

= \(5\sqrt[2]{7}\) + \(3\sqrt[2]{2^{2}\times 5}\) - \(2\sqrt[2]{4^{2}\times 2}\) - \(3\sqrt[2]{4^{2}\times 6}\)

= \(5\sqrt[2]{7}\) + \(6\sqrt[2]{5}\) - \(8\sqrt[2]{5}\) - \(12\sqrt[2]{6}\)

= \(5\sqrt[2]{7}\) - \(2\sqrt[2]{5}\) - \(12\sqrt[2]{6}\).


Note:

√x + √y ≠ \(\sqrt{x + y}\) and

√x - √y ≠ \(\sqrt{x - y}\)

 Surds






11 and 12 Grade Math

From Addition and Subtraction of Surds to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Calculating Profit Percent and Loss Percent | Profit and Loss Formulas

    Jun 12, 25 12:48 PM

    In calculating profit percent and loss percent we will learn about the basic concepts of profit and loss. We will recall facts and formula while calculating profit percent and loss percent. Now we wil

    Read More

  2. Word Problems on Profit and Loss Worksheet |Cost Price |Selling Price

    Jun 11, 25 04:26 PM

    Word Problems on Profit and Loss Worksheet
    In word problems on profit and loss worksheet you will get different types of problems on cost price and selling price, profit and loss, calculating profit o loss, calculating selling price and cost p…

    Read More

  3. Round off to Nearest 1000 |Rounding Numbers to Nearest Thousand| Rules

    Jun 11, 25 03:12 PM

    Round off to Nearest 1000
    Round off to nearest 1000 is discussed here. While rounding off to the nearest 1000, if the digit in the hundreds place is between 0 – 4 i.e., < 5, then the hundreds place is replaced by ‘0’. If the d…

    Read More

  4. Round off to Nearest 100 | Rounding Numbers To Nearest Hundred | Rules

    Jun 11, 25 03:13 AM

    Round off to Nearest 100
    While rounding off to the nearest hundred, if the digit in the tens place is between 0 – 4 i.e. < 5, then the tens place is replaced by ‘0’. If the digit in the units place is equal to or >5, then the…

    Read More

  5. Round off to Nearest 10 |How To Round off to Nearest 10?|Rounding Rule

    Jun 10, 25 05:36 PM

    Rounding to the Nearest 10
    Round off to nearest 10 is discussed here. Rounding can be done for every place-value of number. To round off a number to the nearest tens, we round off to the nearest multiple of ten. A large number…

    Read More