Subscribe to our YouTube channel for the latest videos, updates, and tips.


Conjugate Surds

The sum and difference of two simple quadratic surds are said to be conjugate surds to each other.

Conjugate surds are also known as complementary surds.

Thus, the sum and the difference of two simple quadratic surds 4√7and √2 are 4√7 + √2 and 4√7 - √2   respectively. Therefore, two surds (4√7 + √2) and (4√7 - √2) are conjugate to each other.

Similarly, two surds (-2√5 + √3) and (-2√5 - √3) are conjugate to each other.

In general, two binomial quadratic surds (x√a + y√b) and (x√a - y√b) are conjugate to each other.

In complex or binominal surds, if sum of two quadratic surds or a quadratic surd and a rational number is multiplied with difference of those two quadratic surds or quadratic surd and rational number, then rational number under root of surd is get squared off and it becomes a rational number as product of sum and difference of two numbers is difference of the square of the two numbers.

\(a^{2} - b^{2} = (a + b)(a - b)\).

The sum and difference of two quadratic surds is called as conjugate to each other. For example \(\sqrt{x}\) = a and \(\sqrt{y}\) = b, a and b are two quadratic surds, if (a + b) or \((\sqrt{x} + \sqrt{y})\) is multiplied with (a - b) or \((\sqrt{x} - \sqrt{y})\), the result will \((\sqrt{x})^{2}\) - \((\sqrt{y})^{2}\) or (x - y) which is rational number. Here \((\sqrt{x} + \sqrt{y})\) and \((\sqrt{x} - \sqrt{y})\) are conjugate surds to each other and the process is called as rationalization of surds as the result becomes a rational number. This process is used for fraction expression of complex surds, where the denominator needs to converted to a rational number eliminating the roots of surds, conjugate surds multiplied to both numerator and denominator and denominator becomes rational.

Like for example, if simplification of the complex surd \(\frac{6}{\sqrt{3} - 1}\) is to be done, denominator \(\sqrt{3} - 1\) is to be converted to a rational number. If a = \(\sqrt{3}\) and b = 1, then denominator is (a-b), if we multiply (a + b) or \(\sqrt{3} + 1\), it will \(a^{2} - b^{2}\) and \(\sqrt{3}\) will be squared off.

\(\frac{6}{\sqrt{3} - 1}\)

= \(\frac{6(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)}\)

= \(\frac{6(\sqrt{3} + 1)}{3 - 1}\)

= \(\frac{6(\sqrt{3} + 1)}{2}\)

= 2(\sqrt{3} + 1).

In the above example \(\sqrt{3} + 1\) is used as rationalizing factor which is a conjugate to \(\sqrt{3} - 1\).

Note:

1. Since 3 + √5 = √9 + √5 and surd conjugate to √9 + √5 is √9 - √5, hence it is evident that surds 3 + √5 and 3 - √5 are conjugate to each other.

 In general, surds (a + x√b) and (a - x√b) are complementary to each other.

2. The product of two binomial quadratic surds is always rational.

For example,

(√m + √n)(√m - √n) = (√m)^2 - (√n)^2 = m - n, which is rational.


Here are some examples of conjugates in the following table.

\((\sqrt{2} + \sqrt{3})\)

\((\sqrt{5} + \sqrt{3})\)

\(\sqrt{2} + 1\)

\((4\sqrt{2} + 2\sqrt{3})\)

\((\sqrt{x} + y)\)

\((a\sqrt{x} + b\sqrt{y})\)

\((\sqrt{2} - \sqrt{3})\)

\((\sqrt{5} - \sqrt{3})\)

\(\sqrt{2} - 1\)

\((4\sqrt{2} - 2\sqrt{3})\)

\((\sqrt{x} - y)\)

\((a\sqrt{x} - b\sqrt{y})\)

Problems on conjugate surds:

1. Find the conjugates of the following surds.

\((\sqrt{5} + \sqrt{7})\), \((4\sqrt{11} - 3\sqrt{7})\), \(3\sqrt{17} + 19\), \((a\sqrt{b} - b\sqrt{a})\).

Solution:

Given Surds

\((\sqrt{5} + \sqrt{7})\)

\((4\sqrt{11} - 3\sqrt{7})\)

\(3\sqrt{17} + 19\)

\((a\sqrt{b} - b\sqrt{a})\)

Conjugate

\((\sqrt{5} - \sqrt{7})\)

\((4\sqrt{11} + 3\sqrt{7})\)

\(3\sqrt{17} - 19\)

\((a\sqrt{b} + b\sqrt{a})\)


2. Simplify the surd \(\frac{\sqrt[2]{5} - 1}{\sqrt[2]{5} + 1}\) by using conjugate surd.

Solution:

= \(\frac{\sqrt[2]{5} - 1}{\sqrt[2]{5} + 1}\)

As the denominator is \(\sqrt[2]{5} + 1\), for rationalization of the surd, we need to multiply both numerator and denominator by the conjugate surd \(\sqrt[2]{5} - 1\).

= \(\frac{(\sqrt[2]{5} - 1)(\sqrt[2]{5} - 1)}{(\sqrt[2]{5} + 1)(\sqrt[2]{5} - 1)}\)

= \(\frac{(\sqrt[2]{5} - 1)^{2}}{5 - 1}\)….. as we know \((a + b)(a - b) = a^{2} - b^{2}\)

= \(\frac{((\sqrt[2]{5})^{2} - 2\times \sqrt{5} + 1^{2})}{4}\)

= \(\frac{5 - 2\sqrt{5} + 1}{4}\)

= \(\frac{6 - 2\sqrt{5}}{4}\)

= \(\frac{2(3 - \sqrt{5})}{4}\)

= \(\frac{3 - \sqrt{5}}{2}\)


3. Rationalize the surd \(\frac{\sqrt{2}}{\sqrt{x}-\sqrt{2}}\).

Solution:

\(\frac{\sqrt{2}}{\sqrt{x} - \sqrt{2}}\)

As the denominator is \((\sqrt{x} - \sqrt{2})\), the conjugate surd is \((\sqrt{x} + \sqrt{2})\), we need to multiply the conjugate surd with both numerator and denominator to rationalize the surd.

= \(\frac{(\sqrt{2})(\sqrt{x} + \sqrt{2})}{(\sqrt{x} - \sqrt{2})(\sqrt{x} + \sqrt{2})}\)

= \(\frac{\sqrt{2x} + 2}{x - 2}\).


4. Rationalize the surd \(\frac{\sqrt{5}}{2\sqrt{7}-3\sqrt{5}}\).

Solution:

\(\frac{\sqrt{5}}{2\sqrt{7}-3\sqrt{5}}\)

As the denominator is \((2\sqrt{7} - 3\sqrt{5})\), the conjugate surd is \((2\sqrt{7} + 3\sqrt{5})\), we need to multiply the conjugate surd with both numerator and denominator to rationalize the surd.

= \(\frac{\sqrt{5}\times (2\sqrt{7} + 3\sqrt{5})}{(2\sqrt{7} - 3\sqrt{5})(2\sqrt{7} + 3\sqrt{5})}\)

= \(\frac{2\sqrt{35} + 3\times 5}{(2\sqrt{7})^{2} - (3\sqrt{5})^{2}}\)

= \(\frac{2\sqrt{35} + 15}{4\times 7 -  9\times 5}\)

= \(\frac{2\sqrt{35} + 15}{28 - 45}\)

= \(-\frac{(2\sqrt{35} + 15)}{17}\)

 Surds








11 and 12 Grade Math

From Conjugate Surds to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Calculating Profit Percent and Loss Percent | Profit and Loss Formulas

    Jun 12, 25 12:48 PM

    In calculating profit percent and loss percent we will learn about the basic concepts of profit and loss. We will recall facts and formula while calculating profit percent and loss percent. Now we wil

    Read More

  2. Word Problems on Profit and Loss Worksheet |Cost Price |Selling Price

    Jun 11, 25 04:26 PM

    Word Problems on Profit and Loss Worksheet
    In word problems on profit and loss worksheet you will get different types of problems on cost price and selling price, profit and loss, calculating profit o loss, calculating selling price and cost p…

    Read More

  3. Round off to Nearest 1000 |Rounding Numbers to Nearest Thousand| Rules

    Jun 11, 25 03:12 PM

    Round off to Nearest 1000
    Round off to nearest 1000 is discussed here. While rounding off to the nearest 1000, if the digit in the hundreds place is between 0 – 4 i.e., < 5, then the hundreds place is replaced by ‘0’. If the d…

    Read More

  4. Round off to Nearest 100 | Rounding Numbers To Nearest Hundred | Rules

    Jun 11, 25 03:13 AM

    Round off to Nearest 100
    While rounding off to the nearest hundred, if the digit in the tens place is between 0 – 4 i.e. < 5, then the tens place is replaced by ‘0’. If the digit in the units place is equal to or >5, then the…

    Read More

  5. Round off to Nearest 10 |How To Round off to Nearest 10?|Rounding Rule

    Jun 10, 25 05:36 PM

    Rounding to the Nearest 10
    Round off to nearest 10 is discussed here. Rounding can be done for every place-value of number. To round off a number to the nearest tens, we round off to the nearest multiple of ten. A large number…

    Read More