Express of a Simple Quadratic Surd

We will learn how to express of a simple quadratic surd. We cannot express a simple quadratic surd by the following ways:

I. A simple quadratic surd cannot be equal to the sum or difference of a rational quantity and a simple quadratic surd.

Suppose, let √p a given quadratic surd.

If possible, let us assume, √p = m + √n where m is a rational quantity and √n is a simple quadratic surd.

Now, √p = m + √n   

Squaring both sides, we get,        

p = m^2 + 2m√n + n

m^2 +2m√n + n = p

2m√n = p - m^2 - n

√m = (p - m^2 - n)/2m, which is a rational quantity.

From the above expression we can clearly see that the value of a quadratic surd is equal to a rational quantity which is impossible.

Similarly, we can prove that √p ≠ m - √n

Therefore, the value of a simple quadratic surd cannot be equal to the sum or difference of a rational quantity and a simple quadratic surd.

 

II. A simple quadratic surd cannot be equal to the sum or difference of two simple unlike quadratic surds.

Suppose, let √p be a given simple quadratic surd. If possible, let us assume √p = √m + √n are two simple quadratic surds.

Now, √p = √m + √n

Squaring both sides we get,

p = m + 2√mn + n

√mn = (p - m - n)/2, which is a rational quantity.

From the above expression we can clearly see that the value of a quadratic surd is equal to a rational quantity, which is obviously impossible, since √m and √n are two unlike quadratic surds, hence √m ∙ √n = √mn cannot be rational.

Similarly, our assumption cannot be correct i.e. √p = √m + √n does not hold.

Similarly, we can prove that, √p ≠ √m - √n.

Therefore, the value of a simple quadratic surd cannot be equal to the sum or difference of two simple unlike quadratic surds.







11 and 12 Grade Math

From Express of a Simple Quadratic Surd to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    May 01, 25 11:57 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More

  2. Adding and Subtracting Large Decimals | Examples | Worksheet | Answers

    May 01, 25 03:01 PM

    Here we will learn adding and subtracting large decimals. We have already learnt how to add and subtract smaller decimals. Now we will consider some examples involving larger decimals.

    Read More

  3. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  4. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  5. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More