# Express of a Simple Quadratic Surd

We will learn how to express of a simple quadratic surd. We cannot express a simple quadratic surd by the following ways:

I. A simple quadratic surd cannot be equal to the sum or difference of a rational quantity and a simple quadratic surd.

Suppose, let √p a given quadratic surd.

If possible, let us assume, √p = m + √n where m is a rational quantity and √n is a simple quadratic surd.

Now, √p = m + √n

Squaring both sides, we get,

p = m^2 + 2m√n + n

m^2 +2m√n + n = p

2m√n = p - m^2 - n

√m = (p - m^2 - n)/2m, which is a rational quantity.

From the above expression we can clearly see that the value of a quadratic surd is equal to a rational quantity which is impossible.

Similarly, we can prove that √p ≠ m - √n

Therefore, the value of a simple quadratic surd cannot be equal to the sum or difference of a rational quantity and a simple quadratic surd.

II. A simple quadratic surd cannot be equal to the sum or difference of two simple unlike quadratic surds.

Suppose, let √p be a given simple quadratic surd. If possible, let us assume √p = √m + √n are two simple quadratic surds.

Now, √p = √m + √n

Squaring both sides we get,

p = m + 2√mn + n

√mn = (p - m - n)/2, which is a rational quantity.

From the above expression we can clearly see that the value of a quadratic surd is equal to a rational quantity, which is obviously impossible, since √m and √n are two unlike quadratic surds, hence √m ∙ √n = √mn cannot be rational.

Similarly, our assumption cannot be correct i.e. √p = √m + √n does not hold.

Similarly, we can prove that, √p ≠ √m - √n.

Therefore, the value of a simple quadratic surd cannot be equal to the sum or difference of two simple unlike quadratic surds.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Constructing a Line Segment |Construction of Line Segment|Constructing

Aug 14, 24 09:52 AM

We will discuss here about constructing a line segment. We know how to draw a line segment of a certain length. Suppose we want to draw a line segment of 4.5 cm length.

2. ### Construction of Perpendicular Lines by Using a Protractor, Set-square

Aug 14, 24 02:39 AM

Construction of perpendicular lines by using a protractor is discussed here. To construct a perpendicular to a given line l at a given point A on it, we need to follow the given procedure

3. ### Construction of a Circle | Working Rules | Step-by-step Explanation |

Aug 13, 24 01:27 AM

Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

4. ### Practical Geometry | Ruler | Set-Squares | Protractor |Compass|Divider

Aug 12, 24 03:20 PM

In practical geometry, we study geometrical constructions. The word 'construction' in geometry is used for drawing a correct and accurate figure from the given measurements. In this chapter, we shall…