Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Area and Perimeter of the Triangle


Here we will discuss about the area and perimeter of the triangle.

If a, b, c are the sides of the triangle, then the perimeter of triangle = (a + b + c) units.

Area of the triangle = √(s(s - a) (s - h) (s - c)) 

The semi-perimeter of the triangle, s = (a + b + c)/2

In a triangle if 'b' is the base and h is the height of the triangle then

Area of triangle = 1/2 × base × height

Similarly,

area and perimeter of the triangle



                              1/2 × AC × BD                              1/2 × BC × AD

 Base of the triangle = (2 Area)/height 

 Height of the triangle = (2 Area)/base 


Area of right angled triangle

 If a represents the side of an equilateral triangle, then its area = (a²√3)/4 

perimeter of an equilateral triangle


Area of right angled triangle

A = 1/2 × BC × AB

   = 1/2 × b × h

area of right angled triangle



Worked-out examples on area and perimeter of the triangle:

1. Find the area and height of an equilateral triangle of side 12 cm. (√3 = 1.73).

Solution: 

Area of the triangle = 34 a² square units 

= 34 × 12 × 12 

= 36√3 cm²

= 36 × 1.732 cm² 

= 62.28 cm²

Height of the triangle = 32 a units

= 32 × 12 cm 

= 1.73 × 6 cm 

= 10.38 cm 



2. Find the area of right angled triangle whose hypotenuse is 15 cm and one of the sides is 12 cm. 

Solution: 

AB² = AC² - BC² 

       = 15² - 12² 

       = 225 - 144

        = 81

Therefore, AB = 9

Therefore, area of the triangle = ¹/₂ × base × height

                                                 = ¹/₂ × 12 × 9 

                                                 = 54 cm²


3. The base and height of the triangle are in the ratio 3 : 2. If the area of the triangle is 243 cm² find the base and height of the triangle. 

Solution: 

Let the common ratio be x 

Then height of triangle = 2x 

And the base of triangle = 3x

Area of triangle = 243 cm²

Area of triangle = 1/2 × b × h 243 = 1/2 × 3x × 2x 

⇒ 3x² = 243

⇒ x² = 243/3

⇒ x = √81

⇒ x = √(9 × 9) 

⇒ x = √9

Therefore, height of triangle = 2 × 9 

                                             = 18 cm 

Base of triangle = 3x 

                          = 3 × 9 

                          = 27 cm



4. Find the area of a triangle whose sides are 41 cm, 28 cm, 15 cm. Also, find the length of the altitude corresponding to the largest side of the triangle. 

Solution: 

Semi-perimeter of the triangle = (a + b + c)/2

                                                 = (41 + 28 + 15)/2 

                                                 = 84/2 

                                                 = 42 cm

Therefore, area of the triangle = √(s(s - a) (s - b) (s - c)) 

                                                 = √(42 (42 - 41) (42 - 28) (42 - 15)) cm²

                                                 = √(42 × 1 × 27 × 14) cm²

                                                 = √(3 × 3 × 3 × 3 × 2 × 2 × 7 × 7) cm²

                                                 = 3 × 3 × 2 × 7 cm²

                                                 = 126 cm²

Now, area of triangle = 1/2 × b × h 

Therefore, h = 2A/b

                     = (2 × 126)/41

                     = 252/41

                     = 6.1 cm



More solved examples on area and perimeter of the triangle:


5. Find the area of a triangle, two sides of which are 40 cm and 24 cm and the perimeter is 96 cm.

Solution:

Since, the perimeter = 96 cm

a = 40 cm, b = 24 cm

Therefore, C = P - (a + b)

                     = 96 - (40 + 24)

                     = 96 - 64

                     = 32 cm

Therefore, S = (a + b + c)/2

                     = (32 + 24 + 40)/2

                     = 96/2

                     = 48 cm

Therefore, area of triangle = √(s(s - a) (s - b) (s - c))

                                           = √(48 (48 - 40) (48 - 24) (48 - 32))

                                           = √(48 × 8 × 24 × 16 )

                                           = √(2 × 2 × 2 × 2 × 3 × 2 × 2 × 2 × 2 × 2 × 2 × 3 × 2 × 2 × 2 × 2)

                                           = 3 × 2 × 2 × 2 × 2 × 2 × 2 × 2

                                           = 384 cm²



6. The sides of the triangular plot are in the ratio 2 : 3 : 4 and the perimeter is 180 m. Find its area.

Solution:

Let the common ratio be x,

then the three sides of triangle are 2x, 3x, 4x

Now, perimeter = 180 m

Therefore, 2x + 3x + 4x = 180

⇒ 9x = 180

⇒ x = 180/9

⇒ x = 20

Therefore, 2x = 2 × 20 = 40

3x = 3 × 20 = 60

4x = 4 × 20 = 80

Area of triangle = √(s(s - a) (s - b) (s - c))

                          = √(90(90 - 80) (90 - 60) (90 - 40))

                          = √(90 × 10 × 30 × 50))

                          = √(3 × 3 × 2 × 5 × 2 × 5 × 3 × 2 × 5 × 5 × 5 × 2)

                          = 3 × 2 × 5 × 2 × 5 √(3 × 5)

                          = 300 √15 m²

                          = 300 × 3.872 m²

                          = 1161.600 m²

                          = 1161.6 m²

The above explanation on area and perimeter of the triangle are explained using step-by-step solution.


● Mensuration

Area and Perimeter

Perimeter and Area of Rectangle

Perimeter and Area of Square

Area of the Path

Area and Perimeter of the Triangle

Area and Perimeter of the Parallelogram

Area and Perimeter of Rhombus

Area of Trapezium

Circumference and Area of Circle

Units of Area Conversion

Practice Test on Area and Perimeter of Rectangle

Practice Test on Area and Perimeter of Square


 Mensuration - Worksheets

Worksheet on Area and Perimeter of Rectangles

Worksheet on Area and Perimeter of Squares

Worksheet on Area of the Path

Worksheet on Circumference and Area of Circle

Worksheet on Area and Perimeter of Triangle











7th Grade Math Problems

8th Grade Math Practice

From Area and Perimeter of the Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Area of a Square and Rectangle | Area of Squares & Rectan

    Jul 19, 25 05:00 AM

    Area and Perimeter of Square and Rectangle
    We will practice the questions given in the worksheet on area of a square and rectangle. We know the amount of surface that a plane figure covers is called its area. 1. Find the area of the square len…

    Read More

  2. Area of Rectangle Square and Triangle | Formulas| Area of Plane Shapes

    Jul 18, 25 10:38 AM

    Area of a Square of Side 1 cm
    Area of a closed plane figure is the amount of surface enclosed within its boundary. Look at the given figures. The shaded region of each figure denotes its area. The standard unit, generally used for…

    Read More

  3. What is Area in Maths? | Units to find Area | Conversion Table of Area

    Jul 17, 25 01:06 AM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More

  4. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 17, 25 12:40 AM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  5. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 11:46 PM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More