Subscribe to our YouTube channel for the latest videos, updates, and tips.


Area and Perimeter of the Triangle


Here we will discuss about the area and perimeter of the triangle.

If a, b, c are the sides of the triangle, then the perimeter of triangle = (a + b + c) units.

Area of the triangle = √(s(s - a) (s - h) (s - c)) 

The semi-perimeter of the triangle, s = (a + b + c)/2

In a triangle if 'b' is the base and h is the height of the triangle then

Area of triangle = 1/2 × base × height

Similarly,

area and perimeter of the triangle



                              1/2 × AC × BD                              1/2 × BC × AD

 Base of the triangle = (2 Area)/height 

 Height of the triangle = (2 Area)/base 


Area of right angled triangle

 If a represents the side of an equilateral triangle, then its area = (a²√3)/4 

perimeter of an equilateral triangle


Area of right angled triangle

A = 1/2 × BC × AB

   = 1/2 × b × h

area of right angled triangle



Worked-out examples on area and perimeter of the triangle:

1. Find the area and height of an equilateral triangle of side 12 cm. (√3 = 1.73).

Solution: 

Area of the triangle = \(\frac{√3}{4}\) a² square units 

= \(\frac{√3}{4}\) × 12 × 12 

= 36√3 cm²

= 36 × 1.732 cm² 

= 62.28 cm²

Height of the triangle = \(\frac{√3}{2}\) a units

= \(\frac{√3}{2}\) × 12 cm 

= 1.73 × 6 cm 

= 10.38 cm 



2. Find the area of right angled triangle whose hypotenuse is 15 cm and one of the sides is 12 cm. 

Solution: 

AB² = AC² - BC² 

       = 15² - 12² 

       = 225 - 144

        = 81

Therefore, AB = 9

Therefore, area of the triangle = ¹/₂ × base × height

                                                 = ¹/₂ × 12 × 9 

                                                 = 54 cm²


3. The base and height of the triangle are in the ratio 3 : 2. If the area of the triangle is 243 cm² find the base and height of the triangle. 

Solution: 

Let the common ratio be x 

Then height of triangle = 2x 

And the base of triangle = 3x

Area of triangle = 243 cm²

Area of triangle = 1/2 × b × h 243 = 1/2 × 3x × 2x 

⇒ 3x² = 243

⇒ x² = 243/3

⇒ x = √81

⇒ x = √(9 × 9) 

⇒ x = √9

Therefore, height of triangle = 2 × 9 

                                             = 18 cm 

Base of triangle = 3x 

                          = 3 × 9 

                          = 27 cm



4. Find the area of a triangle whose sides are 41 cm, 28 cm, 15 cm. Also, find the length of the altitude corresponding to the largest side of the triangle. 

Solution: 

Semi-perimeter of the triangle = (a + b + c)/2

                                                 = (41 + 28 + 15)/2 

                                                 = 84/2 

                                                 = 42 cm

Therefore, area of the triangle = √(s(s - a) (s - b) (s - c)) 

                                                 = √(42 (42 - 41) (42 - 28) (42 - 15)) cm²

                                                 = √(42 × 1 × 27 × 14) cm²

                                                 = √(3 × 3 × 3 × 3 × 2 × 2 × 7 × 7) cm²

                                                 = 3 × 3 × 2 × 7 cm²

                                                 = 126 cm²

Now, area of triangle = 1/2 × b × h 

Therefore, h = 2A/b

                     = (2 × 126)/41

                     = 252/41

                     = 6.1 cm



More solved examples on area and perimeter of the triangle:


5. Find the area of a triangle, two sides of which are 40 cm and 24 cm and the perimeter is 96 cm.

Solution:

Since, the perimeter = 96 cm

a = 40 cm, b = 24 cm

Therefore, C = P - (a + b)

                     = 96 - (40 + 24)

                     = 96 - 64

                     = 32 cm

Therefore, S = (a + b + c)/2

                     = (32 + 24 + 40)/2

                     = 96/2

                     = 48 cm

Therefore, area of triangle = √(s(s - a) (s - b) (s - c))

                                           = √(48 (48 - 40) (48 - 24) (48 - 32))

                                           = √(48 × 8 × 24 × 16 )

                                           = √(2 × 2 × 2 × 2 × 3 × 2 × 2 × 2 × 2 × 2 × 2 × 3 × 2 × 2 × 2 × 2)

                                           = 3 × 2 × 2 × 2 × 2 × 2 × 2 × 2

                                           = 384 cm²



6. The sides of the triangular plot are in the ratio 2 : 3 : 4 and the perimeter is 180 m. Find its area.

Solution:

Let the common ratio be x,

then the three sides of triangle are 2x, 3x, 4x

Now, perimeter = 180 m

Therefore, 2x + 3x + 4x = 180

⇒ 9x = 180

⇒ x = 180/9

⇒ x = 20

Therefore, 2x = 2 × 20 = 40

3x = 3 × 20 = 60

4x = 4 × 20 = 80

Area of triangle = √(s(s - a) (s - b) (s - c))

                          = √(90(90 - 80) (90 - 60) (90 - 40))

                          = √(90 × 10 × 30 × 50))

                          = √(3 × 3 × 2 × 5 × 2 × 5 × 3 × 2 × 5 × 5 × 5 × 2)

                          = 3 × 2 × 5 × 2 × 5 √(3 × 5)

                          = 300 √15 m²

                          = 300 × 3.872 m²

                          = 1161.600 m²

                          = 1161.6 m²

The above explanation on area and perimeter of the triangle are explained using step-by-step solution.


● Mensuration

Area and Perimeter

Perimeter and Area of Rectangle

Perimeter and Area of Square

Area of the Path

Area and Perimeter of the Triangle

Area and Perimeter of the Parallelogram

Area and Perimeter of Rhombus

Area of Trapezium

Circumference and Area of Circle

Units of Area Conversion

Practice Test on Area and Perimeter of Rectangle

Practice Test on Area and Perimeter of Square


 Mensuration - Worksheets

Worksheet on Area and Perimeter of Rectangles

Worksheet on Area and Perimeter of Squares

Worksheet on Area of the Path

Worksheet on Circumference and Area of Circle

Worksheet on Area and Perimeter of Triangle











7th Grade Math Problems

8th Grade Math Practice

From Area and Perimeter of the Triangle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Simple Interest | Word problem on Simple Interest | Free

    Jun 19, 25 02:54 AM

    Worksheet on Simple Interest 2
    In worksheet on simple interest we will get different types of question on calculating the simple interest, the principal amount, the rate of interest and the word problems on simple interest.

    Read More

  2. Terms Related to Simple Interest | Simple Interest Formula | Principal

    Jun 19, 25 12:20 AM

    Terms Related to Simple Interest
    In terms related to simple interest we will learn all the terms related to simple interest. The terms related to simple interest are Interest, Principal, Amount, Simple Interest, Time or period of tim…

    Read More

  3. Introduction to Simple Interest | Definition | Formula | Examples

    Jun 18, 25 01:50 AM

    Simple Interest
    In simple interest we will learn and identify about the terms like Principal, Time, Rate, Amount, etc. PRINCIPAL (P): The money you deposit or put in the bank is called the PRINCIPAL.

    Read More

  4. 5th Grade Profit and Loss Percentage Worksheet | Profit and Loss | Ans

    Jun 18, 25 01:33 AM

    5th Grade Profit and Loss Percentage Worksheet
    In 5th grade profit and loss percentage worksheet you will get different types of problems on finding the profit or loss percentage when cost price and selling price are given, finding the selling pri…

    Read More

  5. Worksheet on Profit and Loss | Word Problem on Profit and Loss | Math

    Jun 18, 25 01:29 AM

    Worksheet on Profit and Loss
    In worksheet on profit and loss, we can see below there are some different types of questions which we can practice in our homework.

    Read More