Processing math: 100%

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Area and Perimeter

Here we will learn about how to find area and perimeter of a plane figures. The perimeter is used to measure the boundaries and the area is used to measure the regions enclosed.

Perimeter:

The length of the boundary of a closed figure is called the perimeter of the plane figure. The units of perimeter are same as that of length, i.e., m, cm, mm, etc.


Area:

A part of the plane enclosed by a simple closed figure is called a plane region and the measurement of plane region enclosed is called its area.

Area is measured in square units.



The units of area and the relation between them is given below: 

area and perimeter,units of area

The different geometrical shapes formula of area and perimeter with examples are discussed below:

Perimeter and Area of Rectangle:

The perimeter of rectangle = 2(l + b).

Area of rectangle = l × b; (l and b are the length and breadth of rectangle)

Diagonal of rectangle = √(l² + b²)



Perimeter and Area of the Square:

Perimeter of square = 4 × S.

Area of square = S × S.

Diagonal of square = S√2; (S is the side of square)



Perimeter and Area of the Triangle:

Perimeter of triangle = (a + b + c); (a, b, c are 3 sides of a triangle)

Area of triangle = √(s(s - a) (s - b) (s - c)); (s is the semi-perimeter of triangle)

S = 1/2 (a + b + c)

Area of triangle = 1/2 × b × h; (b base , h height)

Area of an equilateral triangle = (a²√3)/4; (a is the side of triangle)



Perimeter and Area of the Parallelogram:

Perimeter of parallelogram = 2 (sum of adjacent sides)

Area of parallelogram = base × height


Perimeter and Area of the Rhombus:

Area of rhombus = base × height

Area of rhombus = 1/2 × length of one diagonal × length of other diagonal

Perimeter of rhombus = 4 × side



Perimeter and Area of the Trapezium:

Area of trapezium = 1/2 (sum of parallel sides) × (perpendicular distance between them)
                                = 1/2 (p₁ + p₂) × h (p₁, p₂ are 2 parallel sides)



Circumference and Area of Circle:

Circumference of circle = 2πr
                                        = πd
                       Where, π = 3.14 or π = 22/7
                                     r is the radius of circle
                                     d is the diameter of circle
Area of circle = πr²

Area of ring = Area of outer circle - Area of inner circle.

Word Problems on Area and Perimeter of Plane Figures:

1. Dan runs around a square field of side 20 m long. Ron runs around a rectangular field of length 30 m and breadth 10 m. Who covers more distance? Also find the difference between the areas of square field and rectangular field.

Solution:

Side of the square field = 20 m

Perimeter of the square field = 4 × length of one side

                                          = 4 × 20 m

                                          = 80 m


Distance covered by Dan = 80 m

Length of the rectangular field = 30 cm

Breadth of the rectangular field = 10 m

Perimeter of the rectangular field = 2 × (length + breadth)

                                                 = 2 × (30 m + 10 m)

                                                 = 2 × 40 m

                                                  = 80 m


Distance covered by Ron = 80 m

Hence both covered equal distance.

Area of the square field = side × side

                                  = 20 m × 20 m

                                  = 400 m2


Area of the rectangular field = length × breadth

                                         = 30 × 10 cm

                                         = 300 m2


Difference between the areas = Area of the square – area of the rectangle

                                           = 400 m2 – 300 m2

                                           = 100 m2


2. A park with sides 20 m, 30 m, 6 m, 15 m, 15 m and 12 m is to be fenced. If the cost of fencing is $6 a metre, what is the total cost of fencing?

Solution:

Perimeter of the park = Sum of the length of sides

                               = 20 m + 30 m + 6 m + 15 m + 15 m + 12 m

                               = 98 m


The length of the fence = Perimeter of the park

                                  = 98 m


Cost of fencing 1 m = $ 6

Cost of fencing 98 m = $ 6 × 98

                               = $ 588


Questions and Answers on Area and Perimeter of Plane Figures:

1. A rectangular playground which is 100 m and 30 m broad is to be fenced with wire. How much wire is needed?


Answer: 260 m


2. Which is more? Area of a rectangular field of length 50 m and breadth 20 m or area of a square field of side 40 m.


Answer: Square


3. A field is in the form of a rectangle of length 60 m and breadth 30 m. Find the cost of fencing the field if the cost of fencing is $ 7 a metre. 


Answer: $ 1260

● Mensuration

Area and Perimeter

Perimeter and Area of Rectangle

Perimeter and Area of Square

Area of the Path

Area and Perimeter of the Triangle

Area and Perimeter of the Parallelogram

Area and Perimeter of Rhombus

Area of Trapezium

Circumference and Area of Circle

Units of Area Conversion

Practice Test on Area and Perimeter of Rectangle

Practice Test on Area and Perimeter of Square


 Mensuration - Worksheets

Worksheet on Area and Perimeter of Rectangles

Worksheet on Area and Perimeter of Squares

Worksheet on Area of the Path

Worksheet on Circumference and Area of Circle

Worksheet on Area and Perimeter of Triangle




7th Grade Math Problems

8th Grade Math Practice

From Area and Perimeter to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    May 07, 25 01:48 AM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  2. Dividing Decimals Word Problems Worksheet | Answers |Decimals Division

    May 07, 25 01:33 AM

    Dividing Decimals Word Problems Worksheet
    In dividing decimals word problems worksheet we will get different types of problems on decimals division word problems, dividing a decimal by a whole number, dividing a decimals and dividing a decima…

    Read More

  3. How to Divide Decimals? | Dividing Decimals by Decimals | Examples

    May 06, 25 01:23 AM

    Dividing a Decimal by a Whole Number
    Dividing Decimals by Decimals I. Dividing a Decimal by a Whole Number: II. Dividing a Decimal by another Decimal: If the dividend and divisor are both decimal numbers, we multiply both the numbers by…

    Read More

  4. Multiplying Decimal by a Whole Number | Step-by-step Explanation|Video

    May 06, 25 12:01 AM

    Multiplying decimal by a whole number is just same like multiply as usual. How to multiply a decimal by a whole number? To multiply a decimal by a whole number follow the below steps

    Read More

  5. Word Problems on Decimals | Decimal Word Problems | Decimal Home Work

    May 05, 25 01:27 AM

    Word problems on decimals are solved here step by step. The product of two numbers is 42.63. If one number is 2.1, find the other. Solution: Product of two numbers = 42.63 One number = 2.1

    Read More