Area of Trapezium



Here we will learn how to use the formula to find the area of trapezium.

Area of trapezium ABCD = Area of ∆ ABD + Area of ∆ CBD

= 1/2 × a × h + 1/2 × b × h

= 1/2 × h × (a + b)

= 1/2 (sum of parallel sides) × (perpendicular distance between them)


Area of trapezium



Worked-out examples on area of trapezium

1. The length of the parallel sides of a trapezium are in the rat: 3 : 2 and the distance between them is 10 cm. If the area of trapezium is 325 cm², find the length of the parallel sides.

Solution:

Let the common ration be x,

Then the two parallel sides are 3x, 2x

Distance between them = 10 cm

Area of trapezium = 325 cm²

Area of trapezium = 1/2 (p₁ + p₂) h

325 = 1/2 (3x + 2x) 10

⇒ 325 = 5x × 5

⇒ 325 = 25x

⇒ x = 325/25

Therefore, 3x = 3 × 13 = 39 and 2x = 2 × 13 = 26

Therefore, the length of parallel sides area are 26 cm and 39 cm. 



2. ABCD is a trapezium in which AB ∥ CD, AD ⊥ DC, AB = 20 cm, BC = 13 cm and DC = 25 cm. Find the area of the trapezium. 

find the area of trapezium



Solution:

From B draw BP perpendicular DC

Therefore, AB = DP = 20 cm

So, PC = DC - DP

= (25 - 20) cm

= 5 cm

Now, area of trapezium ABCD = Area of rectangle ABPD + Area of △ BPC

△BPC is right angled at ∠BPC

Therefore, using Pythagoras theorem,

      BC² = BP² + PC²

     13² = BP² + 5²

⇒ 169 = BP² + 25

⇒ 169 - 25 = BP²

⇒ 144 = BP²

⇒ BP = 12

Now, area of trapezium ABCD = Area of rectangle ABPD + Area of ∆BPC

                                                = AB × BP + 1/2 × PC × BP 

                                                = 20 × 12 + 1/2 × 5 × 12 

                                                = 240 + 30 

                                                = 270 cm²


3. Find the area of a trapezium whose parallel sides are AB = 12 cm, CD = 36 cm and the non-parallel sides are BC = 15 cm and AG = 15 cm.

examples on area of trapezium



Solution:

In trapezium ABCD, draw CE ∥ DA. 

Now CE = 15 cm

Since, DC = 12 cm so, AE = 12 cm

Also, EB = AB - AE = 36 - 12 = 24 cm

Now, in ∆ EBC

S = (15 + 15 + 24)/2

= 54/2

= 27

= √(27 × 12 × 12 × 3)

= √(3 × 3 × 3 × 3 × 2 × 2 × 2 × 2 × 3 × 3)

= 3 × 3 × 3 × 2 × 2

= 108 cm²

Draw CP ⊥ EB.

Area of ∆EBC = 1/2 × EB × CP

108 = 1/2 × 24 × CP

108/12 = CP

⇒ CP = 9 cm Therefore, h = 9 cm

Now, area of triangle = √(s(s - a) (s - b) (s - c))

= √(27 (27 - 15) (27 - 15 ) (27 - 24))

Now, area of trapezium = 1/2(p₁ + p₂) × h

= 1/2 × 48 × 9

= 216 cm²



4. The area of a trapezium is 165 cm² and its height is 10 cm. If one of the parallel sides is double of the other, find the two parallel sides.

Solution:

Let one side of trapezium is x, then other side parallel to it = 2x

Area of trapezium = 165 cm²

Height of trapezium = 10 cm

Now, area of trapezium = 1/2 (p₁ + p₂) × h

⇒ 165 = 1/2(x₁ + 2x) × 10

⇒ 165 = 3x × 5

⇒ 165 = 15x

⇒ x = 165/15

⇒ x = 11

Therefore, 2x = 2 × 11 = 22

Therefore, the two parallel sides are of length 11 cm and 22 cm.

These are the above examples explained step by step to calculate the area of trapezium.

● Mensuration

Area and Perimeter

Perimeter and Area of Rectangle

Perimeter and Area of Square

Area of the Path

Area and Perimeter of the Triangle

Area and Perimeter of the Parallelogram

Area and Perimeter of Rhombus

Area of Trapezium

Circumference and Area of Circle

Units of Area Conversion

Practice Test on Area and Perimeter of Rectangle

Practice Test on Area and Perimeter of Square


 Mensuration - Worksheets

Worksheet on Area and Perimeter of Rectangles

Worksheet on Area and Perimeter of Squares

Worksheet on Area of the Path

Worksheet on Circumference and Area of Circle

Worksheet on Area and Perimeter of Triangle










7th Grade Math Problems

8th Grade Math Practice


From Area of Trapezium to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?



Recent Articles

  1. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 18, 24 02:59 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More

  2. Numbers | Notation | Numeration | Numeral | Estimation | Examples

    May 12, 24 06:28 PM

    Numbers are used for calculating and counting. These counting numbers 1, 2, 3, 4, 5, .......... are called natural numbers. In order to describe the number of elements in a collection with no objects

    Read More

  3. Face Value and Place Value|Difference Between Place Value & Face Value

    May 12, 24 06:23 PM

    Face Value and Place Value
    What is the difference between face value and place value of digits? Before we proceed to face value and place value let us recall the expanded form of a number. The face value of a digit is the digit…

    Read More

  4. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    May 12, 24 06:09 PM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  5. Worksheet on Bar Graphs | Bar Graphs or Column Graphs | Graphing Bar

    May 12, 24 04:59 PM

    Bar Graph Worksheet
    In math worksheet on bar graphs students can practice the questions on how to make and read bar graphs or column graphs. Test your knowledge by practicing this graphing worksheet where we will

    Read More