Area of Trapezium



Here we will learn how to use the formula to find the area of trapezium.

Area of trapezium ABCD = Area of ∆ ABD + Area of ∆ CBD

= 1/2 × a × h + 1/2 × b × h

= 1/2 × h × (a + b)

= 1/2 (sum of parallel sides) × (perpendicular distance between them)


Area of trapezium



Worked-out examples on area of trapezium

1. The length of the parallel sides of a trapezium are in the rat: 3 : 2 and the distance between them is 10 cm. If the area of trapezium is 325 cm², find the length of the parallel sides.

Solution:

Let the common ration be x,

Then the two parallel sides are 3x, 2x

Distance between them = 10 cm

Area of trapezium = 325 cm²

Area of trapezium = 1/2 (p₁ + p₂) h

325 = 1/2 (3x + 2x) 10

⇒ 325 = 5x × 5

⇒ 325 = 25x

⇒ x = 325/25

Therefore, 3x = 3 × 13 = 39 and 2x = 2 × 13 = 26

Therefore, the length of parallel sides area are 26 cm and 39 cm. 



2. ABCD is a trapezium in which AB ∥ CD, AD ⊥ DC, AB = 20 cm, BC = 13 cm and DC = 25 cm. Find the area of the trapezium. 

find the area of trapezium



Solution:

From B draw BP perpendicular DC

Therefore, AB = DP = 20 cm

So, PC = DC - DP

= (25 - 20) cm

= 5 cm

Now, area of trapezium ABCD = Area of rectangle ABPD + Area of △ BPC

△BPC is right angled at ∠BPC

Therefore, using Pythagoras theorem,

      BC² = BP² + PC²

     13² = BP² + 5²

⇒ 169 = BP² + 25

⇒ 169 - 25 = BP²

⇒ 144 = BP²

⇒ BP = 12

Now, area of trapezium ABCD = Area of rectangle ABPD + Area of ∆BPC

                                                = AB × BP + 1/2 × PC × BP 

                                                = 20 × 12 + 1/2 × 5 × 12 

                                                = 240 + 30 

                                                = 270 cm²


3. Find the area of a trapezium whose parallel sides are AB = 12 cm, CD = 36 cm and the non-parallel sides are BC = 15 cm and AG = 15 cm.

examples on area of trapezium



Solution:

In trapezium ABCD, draw CE ∥ DA. 

Now CE = 15 cm

Since, DC = 12 cm so, AE = 12 cm

Also, EB = AB - AE = 36 - 12 = 24 cm

Now, in ∆ EBC

S = (15 + 15 + 24)/2

= 54/2

= 27

= √(27 × 12 × 12 × 3)

= √(3 × 3 × 3 × 3 × 2 × 2 × 2 × 2 × 3 × 3)

= 3 × 3 × 3 × 2 × 2

= 108 cm²

Draw CP ⊥ EB.

Area of ∆EBC = 1/2 × EB × CP

108 = 1/2 × 24 × CP

108/12 = CP

⇒ CP = 9 cm Therefore, h = 9 cm

Now, area of triangle = √(s(s - a) (s - b) (s - c))

= √(27 (27 - 15) (27 - 15 ) (27 - 24))

Now, area of trapezium = 1/2(p₁ + p₂) × h

= 1/2 × 48 × 9

= 216 cm²



4. The area of a trapezium is 165 cm² and its height is 10 cm. If one of the parallel sides is double of the other, find the two parallel sides.

Solution:

Let one side of trapezium is x, then other side parallel to it = 2x

Area of trapezium = 165 cm²

Height of trapezium = 10 cm

Now, area of trapezium = 1/2 (p₁ + p₂) × h

⇒ 165 = 1/2(x₁ + 2x) × 10

⇒ 165 = 3x × 5

⇒ 165 = 15x

⇒ x = 165/15

⇒ x = 11

Therefore, 2x = 2 × 11 = 22

Therefore, the two parallel sides are of length 11 cm and 22 cm.

These are the above examples explained step by step to calculate the area of trapezium.

● Mensuration

Area and Perimeter

Perimeter and Area of Rectangle

Perimeter and Area of Square

Area of the Path

Area and Perimeter of the Triangle

Area and Perimeter of the Parallelogram

Area and Perimeter of Rhombus

Area of Trapezium

Circumference and Area of Circle

Units of Area Conversion

Practice Test on Area and Perimeter of Rectangle

Practice Test on Area and Perimeter of Square


 Mensuration - Worksheets

Worksheet on Area and Perimeter of Rectangles

Worksheet on Area and Perimeter of Squares

Worksheet on Area of the Path

Worksheet on Circumference and Area of Circle

Worksheet on Area and Perimeter of Triangle










7th Grade Math Problems

8th Grade Math Practice


From Area of Trapezium to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?



Recent Articles

  1. How to Do Long Division? | Method | Steps | Examples | Worksheets |Ans

    Apr 20, 25 11:46 AM

    Long Division and Short Division Forms
    As we know that the division is to distribute a given value or quantity into groups having equal values. In long division, values at the individual place (Thousands, Hundreds, Tens, Ones) are dividend…

    Read More

  2. Word Problems on Division | Examples on Word Problems on Division

    Apr 20, 25 11:17 AM

    Word Problem on Division
    Word problems on division for fourth grade students are solved here step by step. Consider the following examples on word problems involving division: 1. $5,876 are distributed equally among 26 men. H…

    Read More

  3. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Apr 20, 25 10:27 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  4. Subtraction without Regrouping |4-Digit, 5-Digit & 6-Digit Subtraction

    Apr 20, 25 10:25 AM

    Subtraction without Regrouping
    We will learn subtracting 4-digit, 5-digit and 6-digit numbers without regrouping. We first arrange the numbers one below the other in place value columns and then subtract the digits under each colum…

    Read More

  5. Worksheets on Missing Numbers from 1 to 20 | Counting Missing Numbers

    Apr 20, 25 10:17 AM

    Printable worksheets on missing numbers
    Printable worksheets on missing numbers from 1 to 20 help the kids to practice counting of the numbers.

    Read More