The properties of addition whole numbers are as follows:

If a and b are two whole numbers, then a + b is also a whole number. In other words, the sum of any two whole numbers is a whole number or, whole numbers are closed for addition.

Verification: In order to verify this property, let us take any two whole numbers and add them. We find that the sum is always a whole numbers as shown below

7 + 3 = 10 (10 is also a whole number)

0 + 8 = 8 (8 is also a whole number)

29 + 37 = 66 (66 is also a whole number)

If a and b are any two whole numbers, then a + b = b + a.

In other words, the sum of two whole numbers remains the same even if the order of whole numbers (called addends) is changed.

The numbers can be added in any order. The sum of two numbers remains same even if the order of numbers is changed.

For example:

I. 4313 + 3142 = 7455

3142 + 4313 = 7455

Changing the order of the addends, 4313 and 3142 does not change the sum.

II. 133 + 142 = 275

142 + 133 = 275

Changing the order of the addends, 133 and 142, does not change the sum.

Verification: In order to verify this property, let us consider some pairs of whole numbers and add them in two different orders. We find that the sum remains the same as shown below:

9 + 3 = 3 + 9

13 + 25 = 25 + 13

0 + 32 = 32 + 0

We can add two numbers in any order.

6 + 3 is same as 3 + 6

6 + 3 = 3 + 6

If a is any whole number, then

a + 0 = a = 0 + a

In other words, the sum of any whole number and zero is the number itself. That is, zero is the only whole number that does not change the value (identity) of the number it is added to.

The whole number 0 (zero) is called the additive identity or the identity element for addition of whole numbers.

The number remains the same when zero is added to the number.

For example:

I. 5918 + 0 = 5918

Identity of 5918 remains the same when added to zero.

II. 45 + 0 = 45

Identity of 45 remains same when added to zero.

Verification: In order to verify this property, we take any whole number and add it to zero. We find that the sum is the whole number itself as shown below:

5 + 0 = 5 = 0 + 5

27 + 0 = 27 = 0 + 27

137 + 0 = 137 = 0 + 137

Note:

Zero is called the additive identity because it maintains or does not change the identity (value) of the numbers during the operation of addition.

If a, b, c are any three whole numbers, then

(a + b) + c = a + (b + c)

In other words, the addition of whole numbers is associative.

When three or more numbers are added, the sum remains the same regardless of their group or place.

For example:

I. 4610 + 1129 + 2382 = 5739 + 2382 = 8121

4610 + 1129 + 2382 = 4610 + 3511 = 8121

4610 + 2382 + 1129 = 6992 + 1129 = 8121

Grouping of the addends does not change the sum.

II. 23 + 45 + 16 = 68 + 16 = 84

23 + 45 + 16 = 23 + 61 = 84

23 + 16 + 45 = 39 + 45 = 84

Grouping of the addends does not change the sum.

Verification: In order to verify this property, we take three whole numbers, say a, b, c and find the values of the expression (a + b) + c and a + (b + c). We find that the values of these expression remain same, as shown below;

(i) (2 + 5) + 7 = 2 + (5 + 7)

then, 7 + 7 = 2 + 12

14 = 14

(ii) (5 + 10) + 13 = 5 + (10 + 13)

then, 15 + 13 = 5 + 23

28 = 28

(iii) (9 + 0) + 11 = 9 + (0 + 11)

then, 9 + 11 = 9 + 11

20 = 20

Let us consider any three whole numbers a, b, c.

We have, (a + b) + c

= (b + a) + c [By using commutativity of addition we have a + b = b + a]

= b + (a + c) [By using associativity of addition]

= b + (c + a) [By using commutativity of addition]

= (b + c) + a [By using associativity of addition]

= (c + b) + a [By using commutativity of addition]

V. Property of Opposites of Addition:

For any real number a, there is a unique real number –a such that

a + (–a) = 0 and (–a) + a = 0

The sum of the real number (a) and its opposite real number (-a) is zero then they are known as the additive inverses of each other.

Verification:

5 + (-5) = 0 and (-5) + 5 = 0

or, 5 - 5 = 0 and -5 + 5 = 0

Here 5 is real number and (-5) is it's opposite real number. Sum of 5 and (-5) is zero.

Therefore, (-5) is additive inverses of 5

or, 5 is additive inverses of (-5).

VI. Property of Opposite of a Sum of Addition:

If a and b are any two whole numbers,then

–(a + b) = (–a) + (–b)

The opposite of the sum of whole numbers is equal to the sum of the opposites whole numbers.

Verification:

-(3 + 4) = (-3) + (-4)

or, -(7) = -3 -4

or, -7 = -7

Here the opposite of the sum of 3 and 4 is equal to -7.

The opposites of 3 and 4 are (-3) and (-4) respectively.

The sum of the opposites (-3) and (-4) is equal to -7.

VII. Property of Successor of a Sum / Successor Property of Addition:

If a is any whole number, then

a + 1 = (a + 1), which is a successor of "a".

If we add 1 with the sum of a number, we will have successor of the number.

On adding 1 to any number, we get the number just after it.

For example:

I. 26519 + 1 = 26520

26520 is successor of 26519

II. 276 + 1 = 277

277 is the successor of 276

Verification:

2420 + 1 = 2421

2421 is the successor of 2420.

Similarly, 1 + 2542 = 2543

2543 is the successor of 2542.

Solved Examples on Properties of Addition:

1. Find the sum of 5, 3, 8, 2 and 7.

Also   5 + 3 + 8 + 2 + 7 = 25

3 + 8 + 5 + 2 + 7 = 25

7 + 2 + 8 + 5 + 3 = 25

While adding we can change the order of addends in any way but the sum is always the same.

1. What is one more than

(i) 2,271

(ii) 4,245

(iii) 6,492

(iv) 2,456

(v) 2,198

(vi) 3,040

1. (i) 2,272

(ii) 4,246

(iii) 6,493

(iv) 2,457

(v) 2,199

(vi) 3,041

2. What is 10 more than:

(i) 3,462

(ii) 4,298

(iii) 9,011

(iv) 2,321

(v) 3,462

(vi) 2,429

2. (i) 3,472

(ii) 4,308

(iii) 9,021

(iv) 2,331

(v) 3,472

(vi) 2,439

3. What is 100 more than:

(i) 3,721

(ii) 5,673

(iii) 7,132

(iv) 4,271

(v) 9,248

(vi) 6,475

3. (i) 3,821

(ii) 5,773

(iii) 7,232

(iv) 4,371

(v) 9,348

(vi) 6,575

4. What is 1000 more than:

(i) 7,326

(ii) 7,125

(iii) 8,248

(iv) 5,492

(v) 4,320

(vi) 8,167

4. (i) 8,326

(ii) 8,125

(iii) 9,248

(iv) 6,492

(v) 5,320

(vi) 9,167

5. Fill in the blanks:

(i) 2 + ____ = 2 + 3

(ii) 9 + 1 = ____ + 9

(iii) 7 + 0 = ____

(iv) 8 + 2 = 2 + ____

(v) 5 + 4 = 4 + ____

(vi) 6 + 1 = ____ + 6

5. (i) 3

(ii) 1

(iii) 7

(iv) 8

(v) 5

(vi) 1

6. Fill the given blanks using the properties of addition.

(i) 19,94,450 + 3,07,689 = __________ + 19,94,450

(ii) 18,47,336 + __________ = 18,47,336

(iii) 11,300,999 + 1 = __________

(iv) __________ + 0 = 18,95,72,025

(v) (84,32,583 + 22,68,592) + 90,81,225 = 84,32,583 + (__________ + 90,81,225)

(vi) 37,46,442 + 20,000 = __________

(vii) 209,718,660 + 1,000,000 = __________

(i) 674 + 0 = ………….

(ii) 0 + …………. = 174

(iii) 723 + 122 = …………. + 723

(iv) 118 + 687 = 687 + ………….

(v) 250 + 211 + …………. = 211 + 134 + 250

(vi) 433 + …………. = 123 + 433

(vii) 102 + …………. = 326 + 102

(viii) 361 + …………. = 361

(ix) …………. + 537 + 216 = 909 + 537 + 216

(x) …………. + 773 = 773 + 612

6. (i) 3,07,689

(ii) 0

(iii) 11,301,000

(iv) 18,95,72,025

(v) 22,68,592

(vi) 37,66,442

(vii) 210,718,660

(i) 674

(ii) 174

(iii) 122

(iv) 118

(v) 134

(vi) 123

(vii) 326

(viii) 0

(ix) 909

(x) 612

7. Fill in the given blanks using the properties of addition:

(i) 9508 + 8857 = ……………. + 9508

(ii) 6698 + ……………. = 6698

(iii) 7397 + 1 = …………….

(iv) 8647 + ……………. = 8648

(v) 7498 + ……………. = 5096 + 7498

(vi) ……………. + 0 = 2985

(vii) (6654 + 3011) + 8010 = 6654 + (……………. + 8010)

(viii) 3997 + 2000 = …………….

(ix) ……………. Added to 50 = 150

(x) 1 more than 999 = …………….

7. (i) 8857

(ii) 0

(iii) 7398

(iv) 1

(v) 5096

(vi) 2985

(vii) 3011

(viii) 5997

(ix) 100

(x) 1000

8. Write the successor of the following numbers:

(i) 433

(ii) 127

(iii) 484

(iv) 579

(v) 397

(vi) 625

(vii) 650

(viii) 823

(ix) 34

(x) 0

8. (i) 434

(ii) 128

(iii) 485

(iv) 580

(v) 398

(vi) 626

(vii) 651

(viii) 824

(ix) 35

(x) 1

## You might like these

• ### Properties of Subtracting Integers | Subtraction of Integers |Examples

The properties of subtracting integers are explained here along with the examples. 1. The difference (subtraction) of any two integers is always an integer. Examples: (a) (+7) – (+4) = 7 - 4 = 3

• ### Subtracting Integers | Subtraction of Integers |Fundamental Operations

Subtracting integers is the second operations on integers, among the four fundamental operations on integers. Change the sign of the integer to be subtracted and then add.

In 6th Grade Worksheet on Whole Numbers contains various types of questions on whole numbers, successor and predecessor of a number, number line, addition of whole numbers, subtraction of whole numbers, multiplication of whole numbers, division of whole numbers, properties

• ### 6th Grade Integers Worksheet | Word Problems | True / False | Answers

In 6th grade integers worksheet contains various types of questions on integers, absolute value of an integer, addition of integer, properties of integer, subtraction of integer, properties of subtraction of integers and word problems on integers.

• ### Worksheet on Subtracting Integers | Subtraction of Integers | Answers

Practice the questions given in the worksheet on subtracting integers. We know that the difference of any two integers is always an integer. I. Subtract the following:

Practice the questions given in the worksheet on adding integers. We know that the sum of any two integers is always an integer. I. Add the following integers:

• ### Properties of Adding Integers | Closure |Commutative | Associative ...

The properties of adding integers are discussed here along with the examples. 1. The addition (sum) of any two integers is always an integer. For example: (i) 5 + 9 = 14 ∈ Z (ii) (-5) + 9 = 4 ∈ Z

• ### Worksheet on Integers and the Number Line|Integers using a Number Line

Practice the questions given in the worksheet on integers and the number line. The questions are based on integers and how to find the integers using a number line. I. Using the following number line, fill in the blanks:

• ### Consecutive Numbers and Alternate Numbers | Definition | Examples

Here we will learn about the consecutive numbers and alternate numbers. Natural numbers come consecutively whereas odd or even numbers come alternatively. Natural numbers which differ by 1 are called consecutive numbers. Numbers which differ by 2 are called alternate numbers

• ### Properties of Whole Numbers | Closure Property | Commutative Property

The properties of whole numbers are as follows: The number 0 is the first and the smallest whole numbers. • All natural numbers along with zero are called whole numbers.

• ### Subtraction of Numbers using Number Line |Subtracting with Number Line

Subtraction of numbers using number line will help us to learn how a number line can be used for subtracting one number from the another number.

• ### Addition of Numbers using Number Line | Addition Rules on Number Line

Addition of numbers using number line will help us to learn how a number line can be used for addition. Addition of numbers can be well understood with the help of the number line.

• ### Representation of Whole Numbers on Number Line | Compare Whole Numbers

Numbers on a line is called the representation of whole numbers on number line. The number line also helps us to compare two whole numbers, i.e., to decide which of the two given whole numbers

• ### Whole Numbers | Definition of Whole Numbers | Smallest Whole Number

The whole numbers are the counting numbers including 0. We have seen that the numbers 1, 2, 3, 4, 5, 6……. etc. are natural numbers. These natural numbers along with the number zero

• ### Counting Natural Numbers | Definition of Natural Numbers | Counting

Natural numbers are all the numbers from 1 onwards, i.e., 1, 2, 3, 4, 5, …... and are used for counting. We know since our childhood we are using numbers 1, 2, 3, 4, 5, 6, ………..

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

Sep 14, 24 04:31 PM

The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

2. ### Three Digit Numbers | What is Spike Abacus? | Abacus for Kids|3 Digits

Sep 14, 24 03:39 PM

Three digit numbers are from 100 to 999. We know that there are nine one-digit numbers, i.e., 1, 2, 3, 4, 5, 6, 7, 8 and 9. There are 90 two digit numbers i.e., from 10 to 99. One digit numbers are ma

3. ### Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

Sep 14, 24 02:12 PM

Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

4. ### Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

Sep 13, 24 02:48 AM

What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as: