Subscribe to our YouTube channel for the latest videos, updates, and tips.


Properties of Adding Integers

The properties of adding integers are discussed here along with the examples.

1. Closure Property: The addition (sum) of any two integers is always an integer.

i.e., 

The sum of integers is always an integer.

Hence, integers are closed under addition. If x and y are two integers, then x + y is always an integer.

For example:

(i) 16 + 48 = 64, which is an integer.

(ii) 12 + (-38) = -26, which is an integer.

(iii) - 24 + (- 14) = - 38, which is an integer.

(iv) 42 + (- 10) = 32, which is an integer.

(v) 5 + 9 = 14 ∈ Z

(vi) (-5) + 9 = 4 ∈ Z

(vii) (-5) + (-9) = -14 ∈ Z

(viii) 5 + (-9) = -4 ∈ Z                    and so on.

2. Commutative Property: Two integers can be added in any order.

Hence, addition is commutative for integers.

For any two integers ‘x’ and ‘y’;

x + y = y + x

For example:

(i) (-7) + 18 = 11 and 18 + (-7) = 11

Therefore, (-7) + 18 = 18 + (-7)


(ii) (-28) + (-5) = - 33 and (-5) + (-28) = -33

Therefore, (-28) + (-5) = (-5) + (-28)


(iii) (+3) + (+8) = (+8) + (+3)

(iv) (-7) + (+3) = (+3) + (-7)

(v) (-9) + (-3) = (-3) + (-9)

(vi) (+5) + (-3) = (+5) + (-3)                    and so on.


3. Associative Property: Three or more integers can be grouped in any order to find their sum. Hence, addition is associative for integers.

For any three integers ‘x’ ‘y’ and ‘z’;

x + (y + z) = (x + y) + z


For example:

(i) [(-5) + (-3)] + 10 = (-8) + 10 = 2 and (-5) + [(-3) + 10] = (-5) + (7) = 2

Therefore, [(-5) + (-3)] + 10 = (-5) + [(-3) + 10]


(ii) [(- 24) + 12] + 6 = (-12) + 6 = -6 and (- 24) + (12 + 6) = - 24 + 18 = -6

Therefore, [(- 24) + 12] + 6 = (- 24) + (12 + 6)


(iii) (+5) + [(-2) + (+3)] = [(+5) + (-2)] + (+3)

(iv) (-3) + [(-4) + (-5)] = [(-3) + (-4)] + (-5)

(v) (+4) + [(+2) + (+3)] = [(+4) + (+2)] + (+3)

(vi) (-2) + [(+3) + (-4)] = [(-2) + (+3)] + (-4)

(vii) (-4) + [(-3) + (+5)] = [(-4) + (-3)] + (+5)

(viii) (+3) + [(+4) + (-2)] = [(+3) + (+4)] + (-2)

(ix) (-3) + [(2) + (7)] = [(-3) + (2)] + (7)

(x) 9 + [(-4) + (-2)] = [9 + (-4)] + (-2)                    and so on.


4. Existence of Additive Identity: The sum of any integer and 0 is the integer itself, 0 is the additive identity for integers.

For any integer ‘x’;

x + 0 = 0 + x = x 

For example:

(i) 100 + 0 = 0 + 100 = 100

(ii) (-45) + 0 = 0 + (-45) = -45

(iii) (+7) + 0 = 0 + (+7) = +7

(iv) (-11) + 0 = 0 + (-11) = -11

(v) 0 + (+9) = (+9) + 0 = +9

(vi) 0 + (-5) = (-5) + 0 = -5                    and so on.


5. Existence of Additive Inverse: For any integer x, there exists its opposite -x such that their sum is zero, i.e., 

x + (-x) = (-x) + x = 0

Integers x and -x are called opposites or negatives or additive inverses of each other. 

For example:

(i) 15 + (-15) = (-15) + 15 = 0.

Thus, the additive inverse of 15 is -15 and 

         the additive inverse of -15 is 15.

(ii) 56 + (-56) = (-56) + 56 = 0.

Thus, the additive inverse of 56 is -56 and 

         the additive inverse of -56 is 56.


(iii) 5 + (-5) = 0

(iv) (-7) + 7 = 0                    and so on.


6. Successor and Predecessor of an Integers: If x is any integer, then (x + 1) is called the successor of x and x - 1 is called the predecessor of x.

For example:

(i) Successor of 6 is 6 + 1 = 7;     Predecessor of 6 is 6 - 1 = 5

(ii) Successor of -5 is -5 + 1 = -4;     Predecessor of -5 is -5 - 1 = -6


Properties of Adding Integers


Solved Examples on Properties of Adding Integers:

1. Fill in the blanks and make each of the following a true statement.

(i) The additive inverse of 17 is __________.

(ii) The additive inverse of -48 is __________.

(iii) The successor of 12 is __________.

(iv) The successor of -90 is __________.

(v) The predecessor of 1000 is __________.

(vi) The predecessor of -10000 is __________.


Solution:

(i) The additive inverse of 17 is -17; [Since, 17 + (-17) = 0]

(ii) The additive inverse of -48 is 48; [Since, (-48) + 48 = 0]

(iii) The successor of 12 is 13; [Since, 12 + 1 = 13] 

(iv) The successor of -90 is -89; [Since, -90 + 1 = -89]

(v) The predecessor of 1000 is 999; [Since, 1000 - 1 = 999]

(vi) The predecessor of -10000 is -10001; [Since, -10000 - 1 = -10001]


2. Example in Find the sum of the following.

(i) (- 15) + (- 18) + 26 + 45

(ii) 42 + (- 4) + (- 78) + (- 7)


Solution:

(i) (- 15) + (- 18) + 26 + 45

  = (- 33) + (71)

  = + (71 - 33)

  = +38

  = 38


(ii) 42 + (- 4) + (- 78) + (- 7)

  = 42 + (-89)

  = - (89 - 42)

  = - (47)

  = - 47


3. Find an integer 'n" such that

(i) 10 + n = 0

(ii) n + (- 7) = 0


Solution:

(i) 10 + n = 0

⟹ (- 10) + 10 + n = (- 10) + 0; [Adding (-10) on both sides]

⟹ [(- 10) + 10] + n = - 10; [Using associative property and property of 0]

⟹ 0 + n = - 10

Hence, n = - 10.


(ii) n + (- 7) = 0

⟹ n + (- 7) + 7 = 0 + 7; [Adding 7 on both sides]

⟹ n + [(- 7) + 7] = 7; [Using associative property and property of 0]

⟹ n + 0 = 7

Hence, n = 7

You might like these




Numbers Page

6th Grade Page

From Properties of Adding Integers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  2. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  3. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More