90 Degree Clockwise Rotation

Learn about the rules for 90 degree clockwise rotation about the origin.

How do you rotate a figure 90 degrees in clockwise direction on a graph?

Rotation of point through 90° about the origin in clockwise direction when point M (h, k) is rotated about the origin O through 90° in clockwise direction. The new position of point M (h, k) will become M’ (k, -h).

90° Clockwise Rotation


Worked-out examples on 90 degree clockwise rotation about the origin:

1. Plot the point M (-2, 3) on the graph paper and rotate it through 90° in clockwise direction, about the origin. Find the new position of M.

Solution:

90 Degree Clockwise Rotation about the Origin

When the point is rotated through 90° clockwise about the origin, the point M (h, k) takes the image M' (k, -h).

Therefore, the new position of point M (-2, 3) will become M' (3, 2).


2. Find the co-ordinates of the points obtained on rotating the point given below through 90° about the origin in clockwise direction.

(i) P (5, 7)            

(ii) Q (-4, -7)       

(iii) R (-7, 5)        

(iv) S (2, -5)

Solution:

When rotated through 90° about the origin in clockwise direction, the new position of the above points are;

(i) The new position of point P (5, 7) will become P' (7, -5)           

(ii) The new position of point Q (-4, -7) will become Q' (-7, 4)      

(iii) The new position of point R (-7, 5) will become R' (5, 7)

(iv) The new position of point S (2, -5) will become S' (-5, -2)


3. Construct the image of the given figure under the rotation of 90° clockwise about the origin O.

Rotation of 90° Clockwise

Solution:

We get rectangular PQRS by plotting the points P (-3, 1), Q (3, 1), R (3, -1), S (-3, -1).  When rotated through 90°, P' (1, 3), Q' (1, -3), R' (-1, -3) and S' (-1, 3).

Now join P'Q'R'S'.

Rotated through 90°

Therefore, P'Q'R'S' is the new position of PQRS when it is rotated through 90°.


4. Draw a quadrilateral PQRS joining the points P (0, 2), Q (2, -1), R (-1, -2) and S (-2, 1) on the graph paper. Find the new position when the quadrilateral is rotated through 90° clockwise about the origin.

Solution:

Rotated through 90° Clockwise

Plot the point P (0, 2), Q (2, -1), R (-1, -2) and S (-2, 1) on the graph paper. Now join PQ, QR, RS and SP to get a quadrilateral. On rotating it through 90° about the origin in clockwise direction, the new positions of the points are

The new position of point P (0, 2) will become P' (2, 0)

The new position of point Q (2, -1) will become Q' (-1, -2)

The new position of point R (-1, -2) will become R' (-2, 1)

The new position of point S (-2, 1) will become S' (1, 2)

Clockwise Rotation

Thus, the new position of quadrilateral PQRS is P'Q'R'S'.

Related Concepts

Lines of Symmetry

Point Symmetry

Rotational Symmetry

Order of Rotational Symmetry

Types of Symmetry

Reflection

Reflection of a Point in x-axis

Reflection of a Point in y-axis

Reflection of a point in origin

Rotation

90 Degree Clockwise Rotation

90 Degree Anticlockwise Rotation

180 Degree Rotation






7th Grade Math Problems

8th Grade Math Practice

From 90 Degree Clockwise Rotation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    May 01, 25 11:57 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More

  2. Adding and Subtracting Large Decimals | Examples | Worksheet | Answers

    May 01, 25 03:01 PM

    Here we will learn adding and subtracting large decimals. We have already learnt how to add and subtract smaller decimals. Now we will consider some examples involving larger decimals.

    Read More

  3. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  4. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  5. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More