Types of Symmetry

We will learn about all types of symmetry of various shapes in geometry. The explanation will help us to understand the different types of symmetrical shapes which possess or does not possess linear symmetry, point symmetry and rotational symmetry.

Name and draw the shape which possesses linear symmetry, point symmetry and rotational symmetry?

1. Line segment:

Types of Symmetry: Line Segment

(i) Linear symmetry possesses 1 line of symmetry i.e. perpendicular bisector of PQ

(ii) Point symmetry possesses point symmetry mid-point O of line segment PQ

(iii) Rotational symmetry possesses rotational symmetry of order 2 about O.


2. Rectangle:

Types of Symmetry: Rectangle

(i) Linear symmetry possesses 2 lines of symmetry. Line joins the mid-point of 2 parallel sides.

(ii) Point symmetry possesses point symmetry with point of intersection of diagonals as the centre of symmetry.

(iii) Rotational symmetry possesses rotational symmetry of order 2.


3. Rhombus:

Types of Symmetry: Rhombus

(i) Linear symmetry possesses 2 lines of symmetry i.e. 2 diagonals of the rhombus

(ii) Point symmetry possesses point symmetry with point of intersection of diagonals as the center of symmetry.

(iii) Rotational symmetry possesses rotational symmetry of order 2.


4. Square:

Types of Symmetry: Square

(i) Linear symmetry possesses 4 lines of symmetry, 2 diagonals and 2 lines joining the mid-point of opposite sides.

(ii) Point symmetry possesses point symmetry with point of intersection of diagonal.

(iii) Rotational symmetry possesses rotational symmetry of order 4.


5. Circle:

Types of Symmetry: Circle

(i) Linear symmetry possesses infinite lines of symmetry of order 4

(ii) Point symmetry possesses point symmetry about the center O

(iii) Rotational symmetry possesses rotational symmetry of an infinite order



2. Name and draw the shape which possesses linear symmetry but no point symmetry and rotational symmetry?

1. An angle:

Types of Symmetry: An angle

(i) Linear symmetry possesses 1 line of symmetry i.e. angle bisector

(ii) No point symmetry

(iii) No rotational symmetry


2. An isosceles triangle:

Types of Symmetry: An Isosceles Triangle

(i) Linear symmetry possesses 1 line of symmetry i.e. perpendicular bisector l.

(ii) No point symmetry

(iii) No rotational symmetry


3. Semi-circle:

Types of Symmetry: Semi-circle

(i) Linear symmetry possesses 1 line of symmetry i.e. perpendicular bisector of the diameter XY

(ii) No point symmetry

(iii) No rotational symmetry


4. Kite:

Types of Symmetry: Kite

(i) Linear symmetry possesses 1 line of symmetry i.e. diagonal QS

(ii) No point symmetry

(iii) No rotational symmetry


5. Isosceles trapezium:

(i) Linear symmetry possesses 1 line of symmetry. Line XY joins the mid-point of 2 parallel sides.

(ii) No point symmetry

(iii) No rotational symmetry

 

3. Name and draw the shape which possesses linear symmetry and rotational symmetry but no point symmetry?

Equilateral triangle:

Types of Symmetry: Equilateral Triangle

(i) Linear symmetry possesses 3 lines of symmetry i.e. the 3 medians of the triangle.

(ii) No point symmetry

(iii) Rotational symmetry possesses rotational symmetry of order 3.

 

4. Name and draw the shape which does not possess linear symmetry, point symmetry and rotational symmetry?

Scalene triangle:

Types of Symmetry: Scalene Triangle

(i) No linear symmetry

(ii) No point symmetry

(iii) No rotational symmetry

 

5. Name and draw the shape which does not possess linear symmetry but possesses point symmetry and rotational symmetry?

Parallelogram:

Types of Symmetry: Parallelogram

(i) Linear symmetry: No linear symmetry

(ii) Point symmetry possesses point symmetry with point of intersection of diagonals

(iii) Rotational symmetry possesses rotational symmetry of order 2.

Related Concepts

Lines of Symmetry

Point Symmetry

Rotational Symmetry

Order of Rotational Symmetry

Types of Symmetry

Reflection

Reflection of a Point in x-axis

Reflection of a Point in y-axis

Reflection of a point in origin

Rotation

90 Degree Clockwise Rotation

90 Degree Anticlockwise Rotation

180 Degree Rotation





7th Grade Math Problems

8th Grade Math Practice

From Types of Symmetry to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Successor and Predecessor | Successor of a Whole Number | Predecessor

    May 24, 24 06:42 PM

    Successor and Predecessor of a Whole Number
    The number that comes just before a number is called the predecessor. So, the predecessor of a given number is 1 less than the given number. Successor of a given number is 1 more than the given number…

    Read More

  2. Counting Natural Numbers | Definition of Natural Numbers | Counting

    May 24, 24 06:23 PM

    Natural numbers are all the numbers from 1 onwards, i.e., 1, 2, 3, 4, 5, …... and are used for counting. We know since our childhood we are using numbers 1, 2, 3, 4, 5, 6, ………..

    Read More

  3. Whole Numbers | Definition of Whole Numbers | Smallest Whole Number

    May 24, 24 06:22 PM

    The whole numbers are the counting numbers including 0. We have seen that the numbers 1, 2, 3, 4, 5, 6……. etc. are natural numbers. These natural numbers along with the number zero

    Read More

  4. Math Questions Answers | Solved Math Questions and Answers | Free Math

    May 24, 24 05:37 PM

    Math Questions Answers
    In math questions answers each questions are solved with explanation. The questions are based from different topics. Care has been taken to solve the questions in such a way that students

    Read More

  5. Estimating Sum and Difference | Reasonable Estimate | Procedure | Math

    May 24, 24 05:09 PM

    Estimating Sum or Difference
    The procedure of estimating sum and difference are in the following examples. Example 1: Estimate the sum 5290 + 17986 by estimating the numbers to their nearest (i) hundreds (ii) thousands.

    Read More