Volume of a Pyramid

To calculate volume of a pyramid, formula is used to solve the problems on pyramid using step-by-step explanation.


Worked-out examples on volume of a pyramid:

1. The base of a right pyramid is a rectangle of length 12 meters and breadth 9 meters. If each of the slant edges of the pyramid is 8.5 meters, find the volume of the pyramid.

Solution:

Volume of a pyramid

Let the rectangle WXYZ be the base of the right pyramid and its diagonal WY and XZ intersect at O. If OP be perpendicular to the plane of the rectangle at O then OP is the height of the right pyramid.
Join PW .

Then according to the question,

WX = 9 m, XY = 12 m. and PW = 8.5 m

Now, from the plane right angled ∆ WXY we get, 

WY² = WX² + XY² 

or, WY² = 9² + 12² 

or, WY² = 81 + 144 

or, WY² = 225 

or, WY = 15²

Therefore, WY =15; 

Hence, WO = 1/2 WY = 1/2 × 15 = 7.5

Since PO is perpendicular to the plane of rectangle WXYZ at O, hence PO ┴ OW

Therefore, from the right angled triangle POW we get; 

OW² + OP² = PW²

or, OP² = PW² - OW² 

or, OP² = (8.5)² - (7.5)² 

or, OP² = 16

or, OP = √16

Therefore, OP = 4

i.e., the height of the pyramid = 4 m. 

Therefore, the required volume of the pyramid 

= 1/3 × (area of rectangle WXYZ) × OP

= 1/3 × 12 × 9 × 4 cubic metre. 

= 144 cubic metre.



2. OX, OY , OZ are three mutually perpendicular line segments in space; if OX = OY = OZ = a, 

Find the area of the area of the triangle XYZ and the volume of pyramid formed.

Solution:

volume of pyramid

According to the question, OX = OY = OZ = a

Again, OXOY;

Hence, from ∆ OXY we get,

XY² = OX² + OY²

or, XY² = a² + a²

or, XY² = 2a²

Therefore, XY = √2 a

Similarly, from triangle OYZ we get, YZ = √2 a (Since, OYOZ)

And from ∆ OZX we get, ZX = √2 a (Since, OZOX). 


Thus, XYZ is an equilateral triangle of side √2 a.

Therefore, the area of the triangle XYZ is

(√3)/4 ∙ XY²

= (√3)/4 ∙ (√2 a)² = (√3/2) a² square units

Let Z be the vertex of the pyramid OXYZ; then the base of the pyramid is the triangle OXY.

Thus, the area of the base of the pyramid

= area of ∆ OXY

= 1/2 ∙ OXOY , (Since, OXOY) = 1/2 a ∙ a = 1/2 a² 



Again, OZis perpendicular to both OX and OY at their at their point of intersection O. 
Therefore, the height of the pyramid is OZ.

Therefore, the required volume of the pyramid OXYZ

= 1/3 × (area of ∆ XOY) × OZ 

= 1/3 ∙ 1/2 a² ∙ a 

= 1/6 a³ cubic units 


3. The base of a right pyramid is a regular hexagon whose area is 24√3 square cm. If the area of a side face the pyramid is 4√6 square cm what should be its volume? 

Solution: 

slant height of the pyramid

Let the regular hexagon ABCDEF of side a cm. be the base of the right pyramid. Then the area of the base of the pyramid = area of the hexagon ABCDEF

= (6 a²/4) cot (π/6), [using the formulae (na²/4) cot (π/n), for the area of the regular polygon of n sides]

= (3√3/2) a² square cm.

According to the question,

(3√3/2) a² = 24√3

or, a² = 16

or, a = √16

or, a = 4 (Since, a > 0)

Let OP be perpendicular to the plane of the base of the pyramid at O, the centre of the hexagon; then OP is the slant height of the pyramid.

Draw OXAB and join OB and PX.

Clearly, X is the mid-point of AB;

Hence, PX is the slant height of the pyramid.

According to the question, the area of ∆ PAB = 4√6

or, 1/2 ∙ ABPX = 4√6, (Since, PXAB

or, 1/2 ∙ 4 ∙ PX = 4√6, (Since, AB = a = 4)

or, PX= 2√6

Again , OB = length of a side of the hexagon = 4
And BX = 1/2 ∙ AB = 2.

Therefore from right- angled ∆ BOX we get,

OX² + BX² = OB²

or, OX² = 4² – 2²

or, OX² = 16 – 4

or, OX² = 12

or, OX = √12

or, OX = 2√3


Again, OPOX;

hence, from the right – angled ∆ POX we get,

OP² + OX² = PX² or, OP² = PX² – OX²

or, OP² = (2√6)² - (2√3)²

or, OP² = 24 – 12

or, OP² = 12

or, OP = √12

or, OP = 2√3

Therefore, the required volume of the pyramid

= 1/3 × area of the base × OP.

= 1/3 × 24√3 × 2√3 cubic cm.

= 48 cubic cm.

 Mensuration









11 and 12 Grade Math 

From Volume of a Pyramid to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 18, 24 02:58 AM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  2. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 18, 24 02:15 AM

    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  3. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More

  4. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 18, 24 12:31 AM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Apr 17, 24 01:32 PM

    Duration of Time
    We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton every evening. Yesterday, their game started at 5 : 15 p.m.

    Read More