Pyramid

What is pyramid?

A pyramid is a solid bounded by plane faces ; one of its faces is a polygon of any number of sides and the other faces are triangles whose bases are the sides of the polygon and which meet at a common point outside the plane of the polygon.

The plane face which is a polygon is called the base of the pyramid and the triangular faces are its lateral faces. The common point at which the lateral faces meet is called its vertex. The straight lines in which adjacent faces intersect are called the edges (or lateral edges) of the pyramid. The perpendicular distance from the vertex to the plane of the base is called the height (or altitude) of the pyramid. Evidently, a pyramid will have n lateral faces if its base is a polygon of n sides. A pyramid is said to be triangular, quadrangular, pentagonal or hexagonal according as its base is a triangle, quadrilateral, pentagon or hexagon.

pyramid




A pyramid has been displayed in given figure. The base of the pyramid is the pentagon JKLMN, its vertex is P; its lateral faces are the plane triangles PJK, PKL etc. and PJ, PK etc. are its edges. If PO be perpendicular to the plane of the base JKLMN then its height is PO.






Right Pyramid: If the base of a pyramid is a regular polygon and perpendicular drawn from its vertex to the base passes through the centre of the base (i.e. the centre the circumscribed or the inscribed circle of the regular polygon) then the pyramid is called a right pyramid.


The lateral faces of a right pyramid are congruent isosceles triangles. The length of the line joining the vertex to the centre of the base is called height of the right pyramid. The length of the perpendicular drawn from the vertex to any side of base is called the slant height of the right pyramid. Evidently, the slant height is the same for each lateral face of a right pyramid and each slant height bisects the corresponding side of the base. The sum of the areas of the lateral faces of a right prism is called its slant surface.

right pyramid


A right pyramid has been shown in the given figure. It’s base is the regular pentagon ABCDE and P is its vertex; PO is the height of the right pyramid, P0 being the centre of the base; PAB, PBC etc. are its lateral faces which are all isosceles triangles having equal area. If PN bisects AE at right angles, then PN is the slant height of the right pyramid.





Let a be the length of each side of the base of a right pyramid. If h be the height and 1, the slant height of the right pyramid, then

1. The area of the slant surface of the right pyramid

= 1/2 a ∙ l + 1/2 a ∙ l + 1/2 a ∙ l + ……..

= 1/2 ( a + a + a + ……) ∙ l

= 1/2 × perimeter of the base × slant height;


2. Area of whole surface of the right pyramid = area of its slant surface + i.e. area of its base

3. Volume of a right pyramid = 1/3 × area of the base × height.


 Mensuration




11 and 12 Grade Math 

From Pyramid to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Method of H.C.F. |Highest Common Factor|Factorization &Division Method

    Apr 13, 24 05:12 PM

    HCF by Short Division Method
    We will discuss here about the method of h.c.f. (highest common factor). The highest common factor or HCF of two or more numbers is the greatest number which divides exactly the given numbers. Let us…

    Read More

  2. Factors | Understand the Factors of the Product | Concept of Factors

    Apr 13, 24 03:29 PM

    Factors
    Factors of a number are discussed here so that students can understand the factors of the product. What are factors? (i) If a dividend, when divided by a divisor, is divided completely

    Read More

  3. Methods of Prime Factorization | Division Method | Factor Tree Method

    Apr 13, 24 01:27 PM

    Factor Tree Method
    In prime factorization, we factorise the numbers into prime numbers, called prime factors. There are two methods of prime factorization: 1. Division Method 2. Factor Tree Method

    Read More

  4. Divisibility Rules | Divisibility Test|Divisibility Rules From 2 to 18

    Apr 13, 24 12:41 PM

    Divisibility Rules
    To find out factors of larger numbers quickly, we perform divisibility test. There are certain rules to check divisibility of numbers. Divisibility tests of a given number by any of the number 2, 3, 4…

    Read More

  5. Even and Odd Numbers Between 1 and 100 | Even and Odd Numbers|Examples

    Apr 12, 24 04:22 PM

    even and odd numbers
    All the even and odd numbers between 1 and 100 are discussed here. What are the even numbers from 1 to 100? The even numbers from 1 to 100 are:

    Read More