Tetrahedron


What is tetrahedron?

A pyramid on a triangular base is called a tetrahedron. In other words, a tetrahedron is a solid bounded by four triangular faces. Evidently a tetrahedron is a triangular pyramid. If the base of a tetrahedron is an equilateral triangle and the other triangular faces are isosceles triangles then it is called a right tetrahedron. A tetrahedron is said to be regular when all its four faces are equilateral triangles. Clearly, these equilateral triangles are congruent to one another.

What is tetrahedron?




A regular tetrahedron has been shown in the given figure. M is the vertex and the equilateral triangle JLK is the base of the regular tetrahedron. JL, LK, KJ, MJ, ML and MK are its six edges and three lateral faces are congruent equilateral triangles LKM, KJM and JLM. If G be the centroid of the base JLK and N, the mid-point of the side LK then MG is the height and MN, the slant height of the regular tetrahedron. 



Let a be the length of an edge of a regular tetrahedron. Then, 

1. Area of the slant surface of the regular tetrahedron 

= sum of the areas of three congruent equilateral triangles 

= 3 ∙ (√3)/4 a² square units; 


2. Area of the whole surface of the regular tetrahedron

= sum of the areas of four congruent equilateral triangles.

= 4 ∙ (√3)/4 a²

= √3 a² square units;


3. Volume of the regular tetrahedron

= 1/3 × area of the base × height

= (1/3) ∙ (√3)/4 ∙ a² × (√2)/(√3) a

= (√2/12) a³ cubic units.


Note:

In the plane ∆ JLK we have, JNLK

Therefore, JN² = JL² - LN² = a² - (a/2) ² = (3a²)/4

Now, JG = 2/3 ∙ JN

or, JG² = 4/9 ∙ JN²

or, JG² = (4/9) ∙ (3/4) a²

or, JG² = a²/3

Again, MGJG and JM = a

Hence, from the ∆ JGM we get,

MG² = JM² - JG²

or, MG² = a² - (a²/3)

or, MG² = (2a²)/3

Therefore, MG = (√2a)/√3 = height of the regular tetrahedron.


Worked-out problems in finding surface area and volume of a tetrahedron

1. Each edge of a regular tetrahedron is of length 6 metre. Find its total surface area and volume.

Solution:

A regular tetrahedron is bounded by four congruent equilateral triangles.

By question, each edge of the tetrahedron is of length 6 metre.

Therefore, the total surface area of the tetrahedron

              = 4 × area of the equilateral triangle of side 6 metres

              = 4 × (√3)/4 ∙ 6² square metre 

              = 36√3 square metre

Let the equilateral triangle WXY be the base of the tetrahedron. If Z be the mid-point of WX, then YZWX

regular tetrahedron, tetrahedron

Therefore, from the right - angled ∆ XYZ we get;

YZ² = XY² - XZ² = 6² - 3²

[Since, XY = 6 m. (given) and XZ = 1/2 ∙ WX = 3 m]

or, YZ² = 27

or, YZ 3√3

Let G be the centroid of the triangle WXY. Then,

YG = 2/3 ∙ YZ = 2/3 ∙ 3√3

Let PG be perpendicular to the plane of ∆ WXY at G. Then,

PG is the height of the tetrahedron.

Since, PGYG, hence from ∆ PYG we get,

PG² = PY² - YG² = 6² - (2√3)², [Since, PY = 6 m]

or, PG² = 36 - 12 = 24

or, PG = 2√6

Therefore, the required volume of the tetrahedron

= 1/3 × (area of ∆ WXY) × PG

= 1/3 ∙ (√3)/4 ∙ 6² ∙ 2√6 cubic metre.

= 18√2 cubic metre.

 Mensuration






11 and 12 Grade Math 

From Practice Tetrahedron to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Multiplying 2-Digit Number by 1-Digit Number | Multiply Two-Digit Numb

    Oct 21, 24 03:38 PM

    Multiplying 2-Digit Number by 1-Digit Number
    Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. Examples of multiplying 2-digit number by

    Read More

  2. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Oct 21, 24 02:26 AM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More

  3. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Oct 21, 24 02:16 AM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  4. Concept of Multiplication | What is Multiplication? | Basics Math

    Oct 21, 24 01:05 AM

    Multiplication Fact 8 × 2
    Multiplication is repeated addition of a number to itself. Study the following example to understand it: Example: Take 3 groups of 2 pens each as shown below. How many pens are there in all?

    Read More

  5. Properties of Multiplication | Multiplicative Identity | Whole Numbers

    Oct 21, 24 12:50 AM

    Properties of Multiplication of Whole Numbers
    There are six properties of multiplication of whole numbers that will help to solve the problems easily. The six properties of multiplication are Closure Property, Commutative Property, Zero Property…

    Read More