Tetrahedron


What is tetrahedron?

A pyramid on a triangular base is called a tetrahedron. In other words, a tetrahedron is a solid bounded by four triangular faces. Evidently a tetrahedron is a triangular pyramid. If the base of a tetrahedron is an equilateral triangle and the other triangular faces are isosceles triangles then it is called a right tetrahedron. A tetrahedron is said to be regular when all its four faces are equilateral triangles. Clearly, these equilateral triangles are congruent to one another.

What is tetrahedron?




A regular tetrahedron has been shown in the given figure. M is the vertex and the equilateral triangle JLK is the base of the regular tetrahedron. JL, LK, KJ, MJ, ML and MK are its six edges and three lateral faces are congruent equilateral triangles LKM, KJM and JLM. If G be the centroid of the base JLK and N, the mid-point of the side LK then MG is the height and MN, the slant height of the regular tetrahedron. 



Let a be the length of an edge of a regular tetrahedron. Then, 

1. Area of the slant surface of the regular tetrahedron 

= sum of the areas of three congruent equilateral triangles 

= 3 ∙ (√3)/4 a² square units; 


2. Area of the whole surface of the regular tetrahedron

= sum of the areas of four congruent equilateral triangles.

= 4 ∙ (√3)/4 a²

= √3 a² square units;


3. Volume of the regular tetrahedron

= 1/3 × area of the base × height

= (1/3) ∙ (√3)/4 ∙ a² × (√2)/(√3) a

= (√2/12) a³ cubic units.


Note:

In the plane ∆ JLK we have, JNLK

Therefore, JN² = JL² - LN² = a² - (a/2) ² = (3a²)/4

Now, JG = 2/3 ∙ JN

or, JG² = 4/9 ∙ JN²

or, JG² = (4/9) ∙ (3/4) a²

or, JG² = a²/3

Again, MGJG and JM = a

Hence, from the ∆ JGM we get,

MG² = JM² - JG²

or, MG² = a² - (a²/3)

or, MG² = (2a²)/3

Therefore, MG = (√2a)/√3 = height of the regular tetrahedron.


Worked-out problems in finding surface area and volume of a tetrahedron

1. Each edge of a regular tetrahedron is of length 6 metre. Find its total surface area and volume.

Solution:

A regular tetrahedron is bounded by four congruent equilateral triangles.

By question, each edge of the tetrahedron is of length 6 metre.

Therefore, the total surface area of the tetrahedron

              = 4 × area of the equilateral triangle of side 6 metres

              = 4 × (√3)/4 ∙ 6² square metre 

              = 36√3 square metre

Let the equilateral triangle WXY be the base of the tetrahedron. If Z be the mid-point of WX, then YZWX

regular tetrahedron, tetrahedron

Therefore, from the right - angled ∆ XYZ we get;

YZ² = XY² - XZ² = 6² - 3²

[Since, XY = 6 m. (given) and XZ = 1/2 ∙ WX = 3 m]

or, YZ² = 27

or, YZ 3√3

Let G be the centroid of the triangle WXY. Then,

YG = 2/3 ∙ YZ = 2/3 ∙ 3√3

Let PG be perpendicular to the plane of ∆ WXY at G. Then,

PG is the height of the tetrahedron.

Since, PGYG, hence from ∆ PYG we get,

PG² = PY² - YG² = 6² - (2√3)², [Since, PY = 6 m]

or, PG² = 36 - 12 = 24

or, PG = 2√6

Therefore, the required volume of the tetrahedron

= 1/3 × (area of ∆ WXY) × PG

= 1/3 ∙ (√3)/4 ∙ 6² ∙ 2√6 cubic metre.

= 18√2 cubic metre.

 Mensuration






11 and 12 Grade Math 

From Practice Tetrahedron to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of Decimals | Subtracting Decimals | Decimal Subtraction

    Apr 17, 25 01:54 PM

    We will discuss here about the subtraction of decimals. Decimals are subtracted in the same way as we subtract ordinary numbers. We arrange the digits in columns

    Read More

  2. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 17, 25 01:17 PM

    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  3. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Apr 17, 25 12:21 PM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  4. Math Place Value | Place Value | Place Value Chart | Ones and Tens

    Apr 16, 25 03:10 PM

    0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are one-digit numbers. Numbers from 10 to 99 are two-digit numbers. Let us look at the digit 6 in the number 64. It is in the tens place of the number. 6 tens = 60 So…

    Read More

  5. Place Value and Face Value | Place and Face Value of Larger Number

    Apr 16, 25 02:55 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More